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Abstract

The main goal of this thesis is to study the bifurcation of second and third order
rational difference equations. We consider the sufficient conditions for the existence
of the bifurcation.

We study the second order rational difference equation

- o+ ﬁxnfl
A+ Bx, +Cxp_q’

Tt n=012...

with positive parameters «, 3, A, B, C' and non-negative initial conditions {x_j, z_g1,. ..

We study the dynamic behavior and the direction of the bifurcation of the period-
two cycle. Then, we give numerical discussion with figures to support our results.
Also we study the third order rational difference equation

o+ BIn—2
A+ Bx, + Cx,_»

Tn+1l = , n=20,1,2,...

with positive parameters «, 3, A, B, C' and non-negative initial conditions {x_j, z_ 1, . ..

We study the dynamic behavior and the direction of the Neimark-Sacker bifurcation.

Then, we give numerical discussion with figures to support our results.

7x0}-
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Introduction

In mathematics, a dynamical system is a system in which a function describes the
time dependence of a point in a geometrical space. Examples include the mathe-
matical models that describes the flow of water in a pipe, the swinging of a clock
pendulum and the number of fish each spring time in a lake.

The study of dynamical system is the focus of dynamical systems theory, which has
application to a wide variety of fields such as mathematics, physics, chemistry, bi-
ology, medicine, engineering and economics. Dynamical systems are a fundamental
part of bifurcation theory which studies the changes in the qualitative or topolog-
ical structure of systems. A bifurcation occurs when a small change made to the
bifurcation parameter of a system causes a qualitative or topological change in its
behavior.

This thesis consists of 5 chapters. In chapter 1, we explain in details the defini-
tion of dynamical systems and classify them into continuous and discrete systems.
Then, we focus on equilibrium points and their stability of first order and higher
order discrete dynamical systems. Chapter 2 studies types of bifurcation and their
sufficient conditions in simplest forms in discrete dynamical systems of one and two
dimensions. Chapter 3 studies the dynamics and behavior of the solutions of the

equation
o+ ﬁxn—kz

T A + Bz, + Cxpp

Tt . n=0,1,2,... (0.1.1)

with positive parameters «, 3, A, B and C' and non-negative initial conditions {x_j, z_g11,. ..

We focus on invariant intervals, boundedness of the solutions, periodic solutions of
prime period two and global stability of the positive fixed points. Chapter 4 studies
the second order rational difference equation

B o+ fr,_q
A+ Bz, +Cxp_q’

Tt n=012.... (0.1.2)

We focus on the dynamic behavior of the positive fixed point and the type of bifur-
cation exists where the change of stability occurs . Then, 2 numerical examples are

treated to support our results. Chapter 5 studies the third order rational difference

,l’o}.
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equation
« + /Bl'n—2

A+ Bz, + Cx,_»

. n=0,1,2,.... (0.1.3)

Tpt1 =



We also focus on the stability of the positive fixed point and the type of bifurca-
tion exists where the change of stability occurs. Then, we give numerical discussion
with figures to support our results.

Equation (0.1.1) was studied by Guo-Mei Tang, Lin-Xia Hu, and Gang Ma in [5].
Local and global stability, period two solutions, boundedness, invariant intervals
and semicycles were studied.

Equation (0.1.2) was studied by Lin-Xia Hu, Wan-Tong Li, Hong-Wu Xu in [6].
Boundedness, invariant intervals, semicycles and global stability of the positive fixed
point was investigated. Also this equation was studied by Ladas in [7].

Equation (0.1.2) and equation (0.1.3) were studied by Ladas in [2].

The aim of this thesis is to study the bifurcation of the second order rational differ-

ence equation (0.1.2) and the third rational difference equation (0.1.3).
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1.1 Introduction

The dynamical system consists of phase (state) space which consists of points that
represent all possible states of the system and a low of evolution of the state in
time. Every point in the state space must describe the current position of the
system and determine its evolution. Dynamical system is important in physics,
biology, chemistry, economics, social science and many disciplines.
In this chapter we review some basic preliminaries.
Evolution law always defined as a map f* for given ¢ € T' and this map defined on
the state space X as follows

flo X - X

ft is called evolution operator of the dynamical system which transforms an initial
state x( into some state x; at time t where x; denotes ftxo.

Also we use x(t) to denote x; or flzg.

Definition 1. [1] A dynamical system is a triple {T, X, f'}, where T is a time set,
X is a state space and f': X — X is a family of evolution operators parameterized

bytel.
Dynamical systems are two types:

e systems with continuous (real) time 7" = R! which called continuous-time

dynamical systems and the law of evolution is differential equation.

e systems with discrete (integer) time 7' = Z which called discrete-time dynam-

ical systems and the law of evolution is difference equation.

Example 1.1. [1] Consider the plane X = R? and a family of linear nonsingular

transformations on X given by the matriz depending on t € R

ft B 6)‘t 0
B 0 et
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where X\, p # 0 are real numbers. Obuviously, it specifies a continuous-time
dynamical system on X. The system is defined for all (z,t) and the map f* is con-

tinuous in z, as well as in t.o

Example 1.2. [1] Take the space X = Qs of all bi-infinite sequences of two symbols

{1,2}. Consider a map o : X — X, which transforms the sequence
w={...,w_g,w_1,wp,ws,ws,...} €X
into the sequence 0 = o(w),
0={...,0_9,0_1,00,01,05,...} €X

where
O = wrr1, k €Z

The map o merely shifts the sequence by one position to the left. It is called a shift
map. The shift map defines a discrete-time dynamical system on X, f* = o*. Notice
that two sequences, 0,w are equivalent if and only if 6 = o™ (w) for some ko € Z.

o

In this chapter we consider the discrete-time dynamical systems only .

1.2 Dynamics Of First-order difference equations

Consider the function f : X — X and the first-order difference equation of the form

i1 = f(x4) (1.2.1)

where z is an initial condition. Note that

r1 = f(x0)
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xy = f(z1) = f(f(20))

wep = fw) = ..o = [ (@)

Definition 2. [3]/ A point T € X s called an equilibrium (fized) point of equation
(1.2.1) if f(z) =1 .

In example (1.2), we have only the following two fixed points
wh={..,1,1,1,...}

and

wr=1{..,2,22 ..}
Note that the fixed point Z of the equation z; = f'x is a constant solution, since if
ro = Z is an initial point, then x; = f(Z) = Z and 22 = f(x;) = f(Z) = Z and so
on.
We can find the equilibrium points of any map f graphically. We draw a graph of f
in (x,,z,+1)— plane. Next, we find the points where the map f intersect the diag-

onal line y = x. X-coordinate of those points are the equilibrium points of the map f.

Example 1.3. Consider the function

f(z) =3z — 2%

Fized points of the function are the roots of the function h(x) = f(x) —z = 2x — 22,

this implies that the fized points are 1 = 0 and Ty = 2.
To find these fixed points graphically, we use figure (1.1).

Equilibrium points are two types: hyperbolic and nonhyperbolic. An equilib-
rium point & of a map f is said to be hyperbolic if | f(j) |# 1. Otherwise, it is

nonhyperbolic.
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fixed points of fix)=x(3-x)

Fig. 1.1: The fixed points of f(z) = 3z — 22 are the intersection points with the diagonal

line.

Definition 3. [1] An orbit starting at xq is an ordered subset of the state space X
such that Or(zg) = {x € X : & = flzg, for allt € T such that f'xq is defined}.

It is possible to have a solution which is not an equilibrium point but reaches
an equilibrium point after finitely many iterations. This leads to the definition of

eventually equilibrium (fixed) point.

Definition 4. [3] Consider equation (1.2.1). Let x* be a point in the domain of f. If
there ezists a positive integer r and an equilibrium point T of f such that f"(z*) =T
and fT1 # Z, then x* is an eventually equilibrium point.

Definition 5. [3] Let x* be in the domain of f. If for some positive integer k
fE(x*) = a*, then z* is called a k-periodic point of f. The periodic orbit of x*,
O(z*) = {a*, f(z*), f2(x*),..., fF"Yz*)} is called a k-cycle.

Stability Of One-Dimensional Maps

Behavior of the solutions near the equilibrium points is one of the main objectives

in the study of any dynamical system. We introduce the definition of stability and
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its types.

Definition 6. [3/ Consider equation (1.2.1).

1. The equilibrium point T is stable if for any € > 0, there exists 6 > 0 such that
| xo — T |< & implies | f"(xo) — T |< € for all n > 0. If T is not stable, then it

1s called unstable.

2. The equilibrium point T is said to be attracting if there exists n > 0 such that
| o — T |< n implies lim,_oox, = T.

If n =00, T is called a global attractor or globally attracting.

3. The equilibrium point & is an asymptotically stable if it is stable and attracting.

If n =00, T is said to be globally asymptotically stable.

We have simple criterion for the asymptotic stability of equilibrium points

Theorem 1.1. [3] Let & be an equilibrium point of the difference equation (1.2.1)

where f is continuously differentiable at x. Then the following statements hold true:

1. If | f'(z) |< 1, then T is asymptotically stable.

2. If | f'(z) |> 1, then T is unstable. ©

But what if we have a non-hyperbolic fixed point? The next theorems will give

the answer.

Theorem 1.2. [3] Suppose that for an equilibrium point T of (1.2.1) f'(z) = 1. The

following statements then hold:

o If f"(z) #0, then T is unstable.

o If f"(z) =0 and f"(z) > 0, then T is unstable.
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o If f"(z) =0 and f"(z) <0, then T is asymptotically stable. ©
Definition 7. [}] The Schwarzian derivative, Sf, of a function f is defined by
_ ) 3 (=)

=T 2w
And if f(z) = —1, then
SH@) = —"(@) ~ 1@

Theorem 1.3. [3] Suppose that for the equilibrium point T of (1.2.1), f'(z) = —1,
then the following statements hold:
1. If Sf(z) < 0, then T is asymptotically stable.
2. If Sf(z) > 0, then T is unstable.
Example 1.4. Consider the map
f(x) =3z —2% z¢€]0,3]

Find the equilibrium points and determine their stability.

The fized points of f are the roots of the function
h(z) = f(x) — 2z = 22 — 2%

We have two fixed points 1 = 0 and £5 = 2.
Note that f'(z) =3 — 2.

f(0)=3>1,
F(2)= -1
and
Sf(2)=-6<0

Theorem (1.1) implies that ©; is unstable fized point and theorem (1.3) implies that

Ty 18 stable fized point.
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Also we have graphical techniques for analyzing the stability of equilibrium
points for (1.2.1). Cobweb diagram is an important one. We draw the curve
Tpe1 = f(x,) in the (x,,z,41)-plane. From an initial point z,, we know the value
x1 by drawing a vertical line through xo which intersects the graph of f at (xg,x1).
Next draw a horizontal line from (z¢, x;), this line intersects the diagonal line y = z
at the point (z1,x1). Next draw a vertical line from the point (1, 1), this vertical
line intersects the graph of f at the point (z1,x2). Continue at the same way, you

can find z(n) for all n > 0.

Example 1.5. Consider the function in example (1.4). Cobweb diagram (1.2) shows
that To is stable.

Figure (1.3) shows the behavior of x, near the fixed point 5.

ey =

Fig. 1.2: The Cobweb diagram: zs is asymptotically stable.

1.3 Dynamics Of Higher Order Difference Equation

In this section we deal with higher order difference equations.

Definition 8. [5] Let I be an interval of real numbers and let

foIF =1
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stability of fixed point

0 0 20 30 40 50 60 70 80 90 100

Fig. 1.3: The behavior of the solutions near the fixed point x=1.

be a continuously differentiable function. Then for every set of initial conditions

T py...,x_1,%9 € I, the difference equation
Tpr1 = f(@n, Tp1,..,Tpp),mn=0,1,... (1.3.1)

has a unique solution {x,}52 .

The equilibrium point T of the equation (1.3.1) is the point that satisfies T =
fz,z,..., 7).

Definition 9. The solution {x,}>> _, of the difference equation
Tpi1 = f(Tn, 1, ., Tn_g),n = 0,1,2,... is periodic if there exists a positive
integer v such that x, ., = x,. The smallest such r is called the prime period of the

solution of the difference equation.

Now we introduce the definition of stability of equilibrium points of higher order

difference equations.

Definition 10. [7] Let & be an equilibrium point of (1.3.1), then:

1. The equilibrium point T is called locally stable if for any € > 0, there exists
d > 0 such that for all _p,x_py1,...,00 € L with | x_, — T |+ | 2_j31 — T |

+...4+ |0 — T |< 6, we have | x, — T |< € for all n > k.
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2. 7 is called locally asymptotically stable if it is stable and there exists p > 0
such that for allx_p,x_g.q,...,00 €E T with | z_,—Z |+ |z pp1—Z | +... 4|

xo — T |< p we have limy, o, = .

3. T s called a global attractor if for allx_p,x_pi1,...,x9 € I we have lim,_ox, =
x.
4. T s called globally asymptotically stable if it is asymptotically stable and global

attractor.
5. % is called unstable if it is not stable.

We have several theorems that we can use to determine the stability of the fixed

points of high order difference equations.

Definition 11. [5] Consider the difference equation (1.5.1). Then the linearized

equation associated with this difference equation is
0
Tpy1 = Z—f(i:,f,...,j)xn_j,n =0,1,2,...

and the characteristic equation s

AR a—(:i,:ﬁ,...,:ﬁ))xk_j,n:0,1,2a---
u.
j=0 "

Theorem 1.4. [3/[The Linearized Stability Result] Suppose f is continuously
differentiable function on an open neighborhood G C R*' of (z,Z,...,%), where T

is a fized point of (1.5.1), then the following statements are true:

1. If all the characteristic roots of the characteristic equation of the linearized
equation around T lie inside the unit disc in the complex plane, then the equi-

librium point T 1s locally asymptotically stable.
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2. If at least one of these roots is outside the unit disc, then the equilibrium point

T 18 unstable.

3. If one root is on the unit disc and all the other roots are either inside or on

the unit disc, then the equilibrium point * may be stable or unstable. ©

For our equations it is easier to use the following theorems to determine the

stability of the positive equilibrium points.
Theorem 1.5. [3] Consider the difference equation
z(n+2)+pr(n+1)+qr(n)=0,n=01,.... (1.3.2)
The characteristic polynomial is
p(A) = A +pA+q.
Then the zero solution is asymptotically stable if and only if

lpl<l4+g<2 o

We can convert equation (1.3.2) to second-dimensional system by the following:
Let

z1(n) =x(n —1),
xo(n) = z(n).

We have the system

r1(n+1) = x9(n)

xo(n + 1) = pra(n) + qz1(n). (1.3.3)

z1(n)

Let X(n) = ( () > and let f(X(n)) = ( Q ) - (p@(nsizj—nq)xl(n) )

Then system (1.3.3) is equivalent to

X(n+1) = f(X(n)



1. Dynamical System 18

Let A = Jf(z) is the Jacobian matrix of f evaluated at the fixed point Z where

oh Of
T = g )L

8:v1 8:E2

Theorem 1.6. [/] Consider the map f: G C R? — R? ba a C* map, where G is an
open subset of R?, T is a fived point of f, A = Jf(z) and p(A) is the spectral norm
of A where p(A) = maz;{| \; |, \i are the eigenvalues of A}. Then the following

statement hold true:

1. If p(A) < 1, then T is asymptotically stable.
2. If p(A) > 1, then T is unstable.

3. If p(A) =1, then T may or may not be stable.c

One can use the following theorem to determine the stability of the fixed points

of equation (1.3.2).

Theorem 1.7. [}/ Consider the map
r— flx), xcR?
and let A = Jf(Z). Then p(A) <1 if and only if
|trA| —1<detA <1

where trA and det A denote trace and determinant of the matriz A respectively.o

If equations (1.3.2) has a parameter a € R™, then we write them as a second

dimensional system and then it can be denoted by
X(n+1)=f(X(n),a), X(n)ecR’acR™ (1.3.4)

One can use the trace and determinant of the Jacobian matrix of f A = Jf(z, @) to

study the stability of the fixed points (Z, @) of equation (1.3.4). By theorem (1.7) we
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can determine the values of the parameters where the change in the phase portrait
occurs. The lines: detA = —trA — 1, detA = trA — 1 and detA = 1 enclosed the
stabile region in the trace-determinant plane. Also those lines are important in the

study of the bifurcation of any second-dimensional system.

Theorem 1.8. [3] For the third-order difference equation
x(n+3)+pre(n+2) + px(n+ 1) + psxz(n) =0, (1.3.5)
the characteristic polynomaial 1s
P(A) = X+ pi A% + po) + ps.
A necessary and sufficient condition for the zero solution to be asymptotically stable

18

|p1+ps|<14ps and |p2—p1p3|<1—p§. o



2

Bifurcation Of Fixed Points
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Bifurcation is a general term. Its use is to describe the orbit structure near non-

hyperbolic fixed points.

Definition 12. Consider a dynamical system that depends on parameters
r— f(z,q)

where x € R™ and o € R™ represent phase variables and parameters respectively.
As the parameters varies, the phase portrait also varies. Bifurcation is a change of

the topological type of the system as its parameters pass through a bifurcation value.

Bifurcation diagram display the location and stability of fixed point as a func-
tion of the parameter in a single plot. The locations of unstable fixed points are
shown dashed ,while stable fixed points are represented by solid lines.

In one-dimensional systems, there are four types of bifurcations known as saddle-

node, transcritical, pitchfork and period-doubling bifurcation.

2.1 Bifurcation Of one-parameter family of one-dimensional maps

A fixed point (z*, o*) of a one-dimensional map is a bifurcation point if either only
one branch or more than one branch of fixed points passes through (z*, o) in the
«a — x plane, then it lies entirely on one side of the line a = o* in the a — x plane.
In this section we present general conditions under which a one-parameter family of
one-dimensional map will undergo a saddle-node, pitchfork, transcritical and period-
doubling bifurcation.

Remark: If we have more parameters in the problem, we will consider all, except

one, as fixed.
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2.1.1 The Saddle-node Bifurcation

Saddle-node bifurcation associated with the appearance of a slope of 1. A unique
curve of fixed points passes through the non hyperbolic fixed point (z*, *). More-

over, the curve lay entirely on one side of the @ = a* in the x — a plane.

Theorem 2.1. [The Saddle-Node Bifurcation][}] Suppose that f(x,«a) is a C?
one parameter family of one-dimensional maps (i.e both % and % exist and are
continuous), and x* is a fived point of f(x,a*), with %(ﬁ, a*) = 1. Assume further
that

_9f

And o/
= @(éﬂ*, Oé*) # 0

Then there exists an interval I around z* and a C* map o = p(x), wherep: I — R
such that p(x*) = o* and f(z,p(x)) = x. Moreover, if AB < 0, then the fized points
exist for a > o, and, if AB < 0, then the fixed points exist for a < a*.

We need the following theorem to proof theorem (2.1).

Theorem 2.2. [The Implicit Function Theorem][}] Suppose that G : RxR —
R is a C* map in both variables such that for some (pu*,z*) € R x R, G(z*, u*) = 0
and g—f(x*,u*) # 0. Then, there exists an open interval J around p*, an open

interval I around x* and a C* map u = p(x), where p: I — J such that

1. p(z*) = p*

2. G(x,p(x)) =0, forallz € 1 o

Proof of theorem (2.1): Suppose that f(z,a) is a C? one-parameter of one
-dimensional map and z* is a fixed point of f(x,a*) with %(w*,a*) = 1. Also
suppose A = g—i(x*,a*) #0and B = %(w*,a*) # 0.

Let
G(z,a) = f(z,a) — x.
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Note that G is a C! map where

G(z*,a") =0
and oC of
aa(x a) = 8a(x’a):A7éO'

By implicit function theorem there is an open interval J around x* and an open

interval I around o* and a C! map a = p(z), where p : J — I such that

*

p(x*) = o,

and

G(z,p(x)) =0,Vx € J.

Thus
flz,p(x)) =z, Vo € J. (2.1.1)

Differentiate both sides of equation (2.1.1) with respect to x and then substitute

(z*, a*), we obtain

of of ooy
g(ﬂﬁa )+%(9€ a)p'(z*) = 1.

Since we assume gf(x a*) =1 and g—i(x*,a*) # 0, p'(z") = 0.

Differentiate (2.1.1) again with respect to x and then substitute (z*, ™), we obtain

aé( X )+g—£( ) (x )—i—a—é(:& a")p' () = 0.

Substitute p'(z*) = 0, we have

a2f af // *\
@(x, )+a—a($ o )p"(x*) = 0.
This implies

O (2*. B
”(l’*): %:_Z

0x2

Note that the function p(x) = «, which represents the fixed points of f(x,«), has
critical point at x = z*. If AB < 0, then the the curve p(z) is concave upward at

r =2z* and if AB > 0, then p(z) concave downward at x = z*. ¢
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Example 2.1. Consider the map
flz,a)=a—2* z€RaeR

Fized points of the map f(x,«) are given by the equation

2

flz,a)—x=a—2"—2=0
or
1+£v1+4a
r=—-———:
2
Note that fized points are exist for a > —i. At o = —%1 we have the fized point
¥ = —%. This fized point is non-hyperbolic since g—i(x*, a*) =1.
Observe that g—i(:p*,a*) =1+#0 and %(z*,a*) = —2 # 0. By theorem (2.1), the
- L 11
saddle-node bifurcation is present at (—3, —7).
In order to draw the bifurcation diagram we check the stability of the system near
the bifurcation point (—%, —%). Note that f(x,a) = —2x. The upper branch v =
— 1=l V21+4°‘ 18 asymptotically stable if
. 1 —+1+4a
| f(——————, a) |< 1. (2.1.2)

2

Inequality (2.1.2) holds if —le <a< %. So the upper branch is stable when —% <
o < 2. The lower branch is unstable since | f(— it It o) |= 14+ V1 +4a > 1 for
all values of a.. See figure (2.1)

2.1.2 Transcritical Bifurcation

Consider the one-dimensional map
r— f(r,a), zeR aeR

with z* as a fixed point of f(z,a*).
Transcritical bifurcation is another type of bifurcation in one-dimensional systems.

This type appears when we have two curves of fixed points intersected at the non
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Saddle-node bifurcation of the map f(x)a(zf X

Fig. 2.1: Saddle-node bifurcation.

hyperbolic fixed point (z*,a*) in the o — x plane. Both curves existed on either
sides of the line & = a*. However, the stability of the fixed point along a given

curve changed on passing through a = o*.

Theorem 2.3. [9] Suppose that f(x,«) is a C"(r > 2) map where x € R,a € R
and (z*,a*) is a non-hyperbolic fixed point of f(x,«) such that

Of v o
%( 7a)_1’
Of v v
%( 7a)_07
>Pf. .
B () # 0,
and o
@( ,a”) # 0.

Then f undergoes a transcritical bifurcation at (x*,a*).

Proof: Consider the map f(z, ) with a fixed point (z*, «*) which satisfies the

hypotheses. Let
G(ZE,O[) = f(f[',Oé) -
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since we assume that g—f(x*, a*) =0,
(0%

a—G(:E*,oz*) = a—(];(x*,oz*) =0

oo

so we can not apply the Implicit Function Theorem. Let

Glz.a) if x # o*;
B(x’a):{x_ﬁ, | £ a%;

g—G ¥ ), ifx=a*
note that . of
B(ZL’,Q{)_%(ZE7 )_%(l‘7a)_120
and
0B 0 0G 0 f

55 (&) = 5-(5-(@%,a%) = 55— (27, a7) # 0.
By Implicit Function Theorem there is a C* map a = p(x) defined on an interval [

around z* such that p(z*) = o* and

B(z,p(x)) =0, Vel (2.1.3)

Hence, fo;(f)) = 0 for z # x* and so f(x,p(x)) = z. Differentiate (2.1.3) with

respect to x and then substitute (z*, a*), we have

aB * * aB * *\ 4 *\
a—x@ , o )+%($ , o )p(a”) = 0.
Sinee OB 10°G 102f
3 &) =5 al) =505 (e an) #0
and

OB, . . 0 0G, . .
a—a(xaa)—a—a(g(ﬁﬂ))%(l

we have p/(2*) # 0. This means that p(x) does not coincide with z = z*and exists

on both sides of a = a*. ¢

Example 2.2. Consider the map

f(z,a) =24+ ar, r€R,acR.
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The fized points of the map are the roots of the function
h(z,a) = f(z,a) — 1 =2 + ax — x.

Hence, f(x,a) has two fized points x1 = 0 for any value of a and o = 1 — « for
a # 0. Since

9 0,1y =1

ax ) -
(0,1) is a non-hyperbolic fized point of the map f.

To check the stability of the fized points near the point (0,1) we find when

0
| a—i(@,a) <1 (2.1.4)
and
%(1 —a,a) |< 1. (2.1.5)

Inequality (2.1.4) holds if —1 < a < 1 and inequality (2.1.5) holds if 1 < a < 3. So
the branch x = 0 is asymptotically stable if —1 < o < 1 and the branch x = o — 1
18 asymptotically stable if 1 < « < 3. Note that the two branches intersects at
the bifurcation point (0,1) where the branch © = 0 is stable and the other branch
xr = a—1 is unstable before (0,1). Beyond o = 1, the branch x = 0 becomes unstable

and the other branch x = a—1 becomes stable. So change of stability occurs at o = 1.

2.1.3 Pitchfork Bifurcation

Consider the one-dimensional map
r— f(z,a), z€R,aeR

with 2* as a non fixed point of f(z,a*).

Pitchfork bifurcation is a type of bifurcation in one-dimensional systems which ap-
pears when we have two curves of fixed points intersected at the non hyperbolic
fixed point (z*,a*) in the a — x plane. Only one curve existed on both sides of

a = oF; however, its stability changes on passing through o = a*. The other curve
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Transcritical bifurcation of the map f{x}qzﬂx
25-

_2-5 L L 1
-2 -1 0 1 2 3 4

parameter c

Fig. 2.2: Transcritical bifurcation of f(z,a) = 2% + ax.

of fixed points lay entirely to one side of the line a = o* and has a stability type

that is the opposite of the other curve.

Theorem 2.4. [9] Suppose that f(z, ) is a C* one-parameter family of one-dimensional

map, where x € R, a € R with a non-hyperbolic fized point (x*, a*) such that

of

f(z*,a") =2" and 8_95( Lat) =1.

Assume further that of
A= 8—a(x ,a) =0,
Pfo . .
C = @([E , Qv ) = 0,
_of
~ Oxda

(z",a") #0
and 83f

EF=—(z%a" )

0t £ 0

Then pitchfork bifurcation is present at (z*, o).



2. Bifurcation Of Fixed Points 29

Proof: Consider the map f(z, ) with a fixed point (z*, o*) which satisfies the
hypotheses. The fixed points of this map are represented by the equation

G(z,a) = f(z,a) —x = 0.

Note that G(x*,a*) = 0. Observe that %—Sj(m*, a*) = 0 so it is not possible to apply
the Implicit Function Theorem. Let

Gea)ifeat
%(a: ,a), ifr=x
Note that B(z*,a*) = 0 and
oB, , ., 08G**_02f**
a_OZ(I ,a)—%[%(x , & )]_ al_aa(‘r 7@)7&0_

By the Implicit Function Theorem, there is a map o = p(z) defined on an interval

I around z* such that o* = f(z*) and
B(z,p(x)) =0,Vx € I. (2.1.6)

Differentiate equation (2.1.6) with respect to « and then substitute (z*, a*), we get

aB * * aB * * / *\
a_x(xaa)+a_a(xva>p<x)_0
Since OB 1 0%G 102
o 00 = g @hal) = 555 e =0
and OB e 02 f
a—a(x ﬂ):%[%(ﬂﬁ )] = m(x , o) #0,
p(a") =

So x* is a critical point of the map a = p(z). Differentiate (2.1.6) again with respect

to xz, we get

0°B 9°B , 0°B . o OB v
O ) + 202 (@) + T ) (5))? O (2, )y () = O
Substitute (z*, a*) and p'(2*) = 0, we have
gz &)+ 5op(a”) = 0.
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Sinee 0’B 10°G 10%f
W(JJ,O&):gﬁ@,O&):g@(Iﬂ)#O
and 0B 0 0G 0 f
%(f,a)z%%(fﬁ,a)z—aaam(x,a)?é(),
11, % __E
p'(x*) = D#O (2.1.7)

Formula (2.1.7) implies that if ED < 0, then p/(z*) > 0 and the curve p(z) is

concave upward at x = x* and if ED > 0, then the curve p(x) is concave downward

at xr = x*.
Example 2.3. Consider the map

f(r,a)=ar —223,r cR,a €R

The fized point of this map is given by

hz,a) = f(z,a) —x =0

or
2 —ar+x=0.

We have two curves of fized points x = 0 and 2% = QT’l Note that (0,1) is non-

hyperbolic fixed point of f(x,«) such that

of B
5o (0.1 =1,

af B
25(0,1) =0,
o2 f

@(UJ) =0,
0*f
O0xoo

0,1)=1

and 83f
%(O, 1) =-12.
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So at (0, 1) pitchfork bifurcation is present. Now we study the behavior of the system
near the bifurcation point (0,1). | f(0,a) |<1if =1 < a <1 and | f,(i\/g, a) |<
lifl <a<2. Sofor —1 < a <1 we have one branch of stable fixed points x = 0.
Beyond o = 1 this fixed point losses its stability and two stable branches x = :l:\/g

appear. Beyond o = 2 these two branches loses there stability.

Pitchfork: bifurcation of fix)}=c x 25

0.8F
0.6F
04r

0.2r

N2k

04F

06}

NDB8F

ra

1
= -0.5 0 0.5 1 15
parameter c

Fig. 2.3: Pitchfork bifurcation of f(z) = cx — 3

2.1.4 Period-Doubling Bifurcation

Consider the one-dimensional map
x— f(r,a), reRaeR

with z* as a non hyperbolic fixed point of f(z,a*).
Period-doubling bifurcation is a type of bifurcation for the one-dimensional map f

that has a nonhyperbolic fixed point (z*, a*) with a slope of -1 and for the second
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iterate of the map f undergoes a pitchfork bifurcation at the same nonhyperbolic

fixed point.

Theorem 2.5. [Period-Doubling Bifurcation][}] Suppose that f(z,a) is a C",r >
3 one-parameter family of one-dimensional maps and x* is a fixed point of f(z, )
with

%(x*,a*) =—1. (2.1.8)
Assume further that

FrfoL

aaax(x ,a*) # 0. (2.1.9)

Then there is an interval J about x* and a function p : J — R such that f(x,p(z)) #
x but f*(z,p(z)) = .

Proof: Let the function f(z,a) be a C? function where * € R, € R that
satisfied (2.1.8) and (2.1.9).
Let
G(z,a) = f*(r,0) —x

where f?(x,a) = f(f(z,a),a). Note that

aa(m7&)_ax(x7a)aoé(x7a)+aa( ,Oé)-

Assumption (2.1.8) implies g—g(x*7a*) = 0 . Hence, we can not apply the Implicit

Function Theorem directly to G(z, «). Define the function B(z, a) as

G(I7a) %,
i T T
B(x,oz) — { T—x 7é

L% a), ==ua"
Note that
B(z*,a") = %(w*,a*) = [%(m*,&*)]g — 1.
From assumption (2.1.8), we get
B(z*,a") = 0.
OB 9 0G, ., d 0f? P

%(93 o) = %[%(93 , )] |a=ar= %[%(ﬂf , @) = 1] Jazar= 8048:1:(33 ,af).
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Assumption (2.1.9) implies
0B
5o (&) #0.

Now, we can apply the Implicit Function Theorem to B(x,«). By the Implicit
Function Theorem, there is an interval J around z* and a C* map p : J — R such
that p(z*) = o* and

B(z,p(z)) =0, VYrelJ

and so

f2(x,p(2)) = =,
so x is a two-periodic point of f(x, ).
Example 2.4. Consider the map
flz,a) =22+ 2 —azx, ze€R'acR.

Fized points of f(x,a) are the roots of the function

h(z,a) = f(r,a) —x =22° +x — (a+ 1)x.
5
stable if 0 < o < 2 and the curve x* = 5 does not exist if a < 0 and unstable for

a> 0.

Hence, f(z,a) has two curves of fized points x = 0 and z* = The curve x = 0 is

Note that (0,2) is a non-hyperbolic fized point since

f(0,2) =0 and %(0,2} =-1

Thus for a > 2, the map has three unstable curves of fized points. Period-doubling
bifurcation may be present at (0,2). The two-periodic points are the roots of the
function
g(x,a) = fA(r,0) —x
where
fA(x,0) = (@ — 1% — 2(a® — 3a* + 4a — 2)2° + O(4)
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Observe that

£2(0,2) = 0,

o 2

3_{6(0’2) =1,

o f2

%(07 2) =0,

82 2

8_1{2(0’ 2) = 07

83 2

8—;;3(0,2) £ 0
and o 2

81’8()5(0’ 2)#0.

Thus (0,2) is a non-hyperbolic fized point of the map f?(x, ) where this map un-
dergoes a pitchfork bifurcation. So period-doubling bifurcation is present at (0, 2).

We can use the normal form of flip bifurcation theorem to check if the sys-
tem undergoes a period-doubling (flip) bifurcation. We will study the normal form

theorem for flip bifurcation in the simplest form.

The normal form of the period-doubling (flip) bifurcation

Consider the following one-dimensional dynamical system depending on one param-
eter :

v —(1+a)z+2° = f(z,a).

The map f(z,«) is invertible for small | v | in a neighborhood of the origin. f(z, a)
has the fixed point zy = 0 for all @ with eigenvalue 4 = —(1 + «). The point is
linearly stable for small & < 0 and is linearly unstable for & > 0. Note that at o = 0

i = fz(0,0) = —1 so the point is nonhyperbolic. There are no other fixed point
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near the origin for small | « |.
Consider the second iterate f2(z,a). If y = f(z,a), then

fAa0) = fly,a) = -1+ a)y+y°
= —(1+a)-(1+a)z+2"] + [-(L+ a)r+ 2"
=(1+a)z—[(1+a)2+2a+ah)]2® +0(z”).

Note that the map f?(x,a) has the trivial fixed point xo. It also has two nontrivial

fixed points for small a > 0

T2 = f2($1,27 )
where 15 = £(y/a 4+ O(«)). These two points are stable and constitute a cycle of
period two for the original map f(z,«) such that

r1 = f(x9, ), x9 = f(21,0).

As « approaches zero from above, the period two cycle shrinks and disappears. This
is a period-doubling (flip) bifurcation and it is called in this case supercritical. Note
that trivial fixed point is stable for @ < 0 and the period-two cycle z1, xs existing
for a > 0.
The case

= —(1+a)z — 2

can be treated in the same way and the flip bifurcation is called subcritical in this

case.[1]

Generic flip bifurcation

Theorem 2.6. [1] Suppose that a one-dimensional map
r— f(z,a), zreRaelR

with smooth f, has at « = 0 the fized point xo = 0 and let p = f,(0,0) = —1.

Assume that the following nondegeneracy conditions hold:
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1 (0,002 + 1 £ (0,0) £ 0,
2. f2a(0,0) £ 0.

Then there are smooth invertible coordinate and parameter changes transforming the

system into
ne =1+ B)n£n*+0(n').

Proof: By the Implicit Function Theorem, the system has a unique fixed point xy(«)
in some neighborhood of the origin for all sufficiently small | « |, since f,(0,0) # 1.
We can perform a coordinate shift, placing this fixed point at the origin. Therefore,
we can assume without loss of generality that x = 0 is the fixed point of the system

for | a | sufficiently small. Thus, the map f can be written as follows:
F(,0) = £2(0,0)7 + 3 furl0, 0007 + ¢ fure(0, )a® + O(a"), (2.1.10)
where f,(0,a) = —[1 + g(«)] for some smooth function g. Since g(0) = 0 and
§(0) = f1a(0,0) £0,
the function g is locally invertible and can be used to introduce a new parameter:
B =g(a).

Map (2.1.10) can be written as
= p(B)z + a(B)a® + b(B)z* + O(z?),

where pu(8) = —(1 4 (), and the functions a(/3) and b(f) are smooth and equal
(0) = 3122(0,0), H(0) = & fuaa(0,0).

Define a smooth function § = 6(f) and make a change of coordinate

r =1y + oy>.
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This transformation is invertible in some neighborhood of the origin and it’s inverse

can be found by the method of unknown coefficients:
y =z — 02 +26%2° + O(a*).
Using the previous transformation and it’s inverse, we obtain
Gy + (a + 6p — op®)y? + (b + 20a — 26u(Sp + a) + 261> y® + O(y?).

Setting )
a(p

f) = ———"—.
D= 2@) -
Since p?(0) — u(0) = 2 # 0, the quadratic term is killed for all sufficiently small
| B|. We have

2
G=uy+ b+ Mf“ P+ Oy") = ~(1+ By + <3y’ + O

where ¢(f) is a smooth function such that

0(0) = @%(0) £ b(0) =  (Fel0, 0 + % fura(0,0).

Since we assume 3( f42(0,0))? + 3 f202(0,0) # 0, ¢(0) # 0.
Take

The map takes the desired form
i=—L+B)mn+sp+0@n").
where s = sign ¢(0) = £1.0
Lemma 2.7. [1] The map
= —(1+ )z +2° + Oz
15 locally topologically equivalent near the origin to the map

= —(1+B)z+2° o
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We have the following general result.

Theorem 2.8. [1/(Topological normal form for the flip bifurcation)

Any generic one-parameter map
r— f(z,a)

having at o = 0 the fized point xo = 0 with p = f,(0,0) = —1, is locally topologically

equivalent near the origin to one of the following normal forms:

n——(1+B8n£n’ o

In the flip case for any n-dimensional map
r=Ax+ F(z), v e€R" (2.1.11)
where F(z) = O(]| x ||*) is a smooth function and and its Taylor expansion is

F(z) = %B(a:, x) + éC(x, z,x) +O(|| = [I)

where
X, (& 43
—o0 (zjyr) and Cyi(x,y,z —o (x;yr21).
Z%ag =0 (@j30) ;1%% =0 (252)
, and the Jacobian matrix A has the eigenvalue y = —1 and the corresponding

eigenspace T is one-dimensional and spanned by an eigenvector ¢ € R™ such that
Aq = pg. Let p € R™ be the adjoint eigenvector, such that AT”p = up where AT
is the transposed matrix. Normalize p with respect to q such that < p,q >= 1.
Let T°* denote an (n — 1)— dimensional linear eigenspace of A corresponding to
all eigenvalues other than u. Note that the matrix A — uf,, has common invariant
spaces with the matrix A, we conclude that y € T*" if and only if < p,y >= 0.

Any vector x € R™ can be decomposed as
T=uq+y

where uq € T¢, y € T*"* and
u=<px>
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y=x—<p,xr>q. (2.1.12)

In the coordinates (u,y), the map (2.1.11) can be written as
i = put < p, Fug +y) >,

y=Ay+ F(ug+y)— <p, Flug+y) >q. (2.1.13)

Using Taylor expansions, (2.1.13) can be written as

1 1
ﬂ:uu+§0u2+u<b,y>+65u3+...

1
;Q:Ay+§au2—|—... (2.1.14)
where u € R,y € R", 0,6 € R',a,b € R" and < b,y >= > | bjy; is the standard

scaler product < b,y > can be expressed as
< by >=<p,B(q,y) >.

The center manifold of (2.1.14) has the representation

1
y=V(u)= §w2u2 + O(u?),

where wy € T** C R™, so that < p,w >= 0. The vector wy satisfies
(A—I,)ws +a=0.

Note that the matrix A — I,, is invertible in R™ because g = 1 is not an eigenvalue
of A. Thus, we have
Wy = —(A — In)*la

and the restriction of (2.1.14) to the center manifold takes the form

1 1
U=—u+ §au2 + 6((5 —3<p B(qg,(A—1)"ta) >)u® +O(u?)

where 0 =< p, B(q,q) >,6 =< p,C(q,¢,q9) > and a = B(q,q)— < p, B(q,q) > ¢.

Using the identity (A — I,) !¢ = —%q, the restricted map can be written as

i = —u+ a(0)u® 4+ b(0)u® + O(u?), (2.1.15)
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where

1

1 1 1
M@Zg<n0@%®>—j<n3%®>V—§<anAA—hYW@ﬂD>-

The map (2.1.15) can be transformed to the normal form

§=—¢+c(0)+0(¢Y

where

c(0) = a*(0) + b(0).
Thus, the critical normal form coefficient ¢(0) allows us to predict the direction of
bifurcation of period-two cycle. ¢(0) is given by the following invariant formula:

1 1
d@ZE<n0@%®>—§<nﬂaﬂ—043@@%%

If ¢(0) > 0, then a unique and stable period-two cycle bifurcates from the fixed point
at the bifurcation point.[1]

Note that in example (2.4), theorem (2.6) implies that period-doubling bifurcation
exists, since 3(fuz(0,2))% + 1 f142(0,2) = 1(12) =4 # 0 and f,0(0,2) = —1 # 0.

2.2 Bifurcation Of Two-Dimensional Maps

Two-dimensional maps have the same types of bifurcation of one-dimensional maps
in addition to a new type which has no analogue in the one-dimensional maps. It
is the Neimark-Saker bifurcation. In this section we will discuss in details Neimark-
Sacker bifurcation in the simplest form.
Non-hyperbolic fixed points of the two-dimensional maps are those where the Jaco-
bian matrix has eigenvalue on the unit circle.
Let

f(z,a),r € R*,a € R
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be a C",r > 5 one-parameter family of two-dimensional maps and let (z*, a*) be
a fixed point of f(x,a). If (z*,a*) # (0,0), we transform this fixed point to the
origin. Let A = Jf(0,0) be the Jacobian matrix of f(z,«) and let p(A) = 1. There

are three cases to consider

1. if J£(0,0) has one real eigenvalue equals to 1, then we have one of the following

bifurcation (saddle-node, transcritical or pitchfork bifurcation).

2. if J£(0,0) has one real eigenvalue equal to —1, then we have a period-doubling

bifurcation.

3. if Jf(0,0) has two complex conjugate eigenvalues with modulus equal to 1,

then Neimark-Sacker bifurcation appears.[4]

We show in the previous chapter that any fixed point of two-dimensional system is
stable in the region enclosed by the lines: det A = —trA — 1, det A = trA — 1 and
det A = 1 where A is the Jacobian matrix evaluated at this fixed point. Thus when
trA and det A pass through those lines toward the region of stability, the fixed point

becomes stable.

Theorem 2.9. [/ Consider the map
r— f(r,a),r € R* a €R (2.2.1)
Let A = Jf(x*,a*) where (z*,a*) is a fized point of f(x,a). Then the following

hold

1. Ifdet A= —trA—1, then the eigenvalues of A are \y = —det A and \y = —1.
2. If det A=1trA—1, then \y =1 and Ay = det A.

3. If | trA| —1 < det A and det A = 1, then A has complex eigenvalues Ay o =

e* where 0 = cos™ (Z4).
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Proof: Consider the map (2.2.1) with the Jacobian matrix A = Jf(z*, o).

Recall that the eigenvalues of A are

s = %[tm + /A — ddet Al

1. Let det A = —trA—1. Then (trA)>—4det A = (det A+1)*—4det A = (det A—
1)2. This term is non-negative. This implies that A has real eigenvalues and

hence

s = %[—1 _det A+ /{det A= 1)7] = %[—1 det A+ (det A—1)].

So
)\1 = —1, )\2 = —detA

2. Let det A =trA — 1. Then (trA)* — 4detA = (det A — 1)*> > 0. Hence

1 1

This implies that
>\1 = detA,)\g =1

3. Let | trA| —1 < det A and det A = 1. Then
(trA)? —4det(A) = (trA)? —4 < (det A+ 1)* =4 =0.

This implies that A has two complex conjugate eigenvalues

1
Ao = §[t7~A + /4det A — (trA)2].
Substitute det A = 1, we have

/\172 = %[tT’A + \/ 4 — (t’I“A)Q]

Therefore A\; o = re*® where r =| A\, |= \/(%)2—1— W =1and 0 =

\Va—(trA)2
e _
tan™ (F—Fbr—) = cos T (1), ©
4
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Corollary 2.9.1. For the one-parameter of two-dimensional map
r— f(z,a),r e R* a € R (2.2.2)

with the fized point (z*,a*) and A = J f(z*, o), then the following hold

1. If det A = —trA — 1, then the system (2.2.2) undergoes a period-doubling

bifurcation.

2. If det A = trA — 1, then then the system (2.2.2) undergoes a saddle-node

bifurcation.

3. If | trA | =1 < det A and det A = 1, then the system (2.2.2) undergoes a

Neimark-Sacker bifurcation.

This corollary will help us in studying the bifurcation of the second-order difference

a"‘ﬁxnfl

equatlon Ln+1 = AfBrn+Czy 1"

2.2.1 A Pair Of Eigenvalue Of Modulus 1:The Neimark-sacker bifurcation

We turn our attention to the Neimark-Sacker bifurcation which exists in the case
that we have a complex-conjugate pair of eigenvalues of modulus equals 1.

Any map undergoes the Neimark-Sacker bifurcation has a unique closed invariant
curve bifurcates from the fixed point as the bifurcation parameter passes through
zero. The closed invariant curve can be stable or unstable as the bifurcation is

supercritical or subcritical, respectively.

2.2.2  'The normal form of Neimark-Sacker bifurcation
Consider the two dimensional discrete-time system depending on one parameter

T cosf) —sinf 1 9 o cosf) —sinf a —b
= (1+a) ) +(r7+23) )
To sinf) cos@ T sinff cos@ b a

(2.2.3)

)

xy

T2

)
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where « is the parameter, § = 6(«), a = a(a) and b = b(«) are smooth functions
and 0 < 0(0) <, a(0) # 0.

This system has the fixed point 1y = x5 = 0 for all a with Jacobian matrix

A=(1+a) < cosf@ —sinf )

sinf cos®

The Jacobian matrix A has the eigenvalues p1 2 = (14 a)e*™ which makes the map
(2.2.3) is invertible near the origin for all small a. Note that at & = 0, A has a
complex-conjugate pair of eigenvalues of modulus one. So at o = 0 the origin is
non-hyperbolic.

To analyze the corresponding bifurcation, introduce the complex variable z = z1 +
iT9, Z = T — iTo and let d = a + ib. Note that | z |*= 2z = 2? + 23. The equation
for z is

z—ez(l+a+d|z?)=pz+cz]|z]|?

where p = p(a) = (1 + @)@ and ¢ = c¢(a) = €@ d(a) are complex functions of

the parameter «. Using the representation z = pe® where p =| z |. We obtain

p—p|l+a+da)y’

ala a)l?
Note that | 1+a+d(a)p? |= (1+a)\/1 + 21J£a)p2 + ("fsr;‘)Qp‘* = 1+a+a(a)p?*+0(p?).

We obtain the following polar form
p— p(1+a+a(a)p?) + p*Ra(p)

= o+ 0(a)+ p*Qalp).

Where R and Q are smooth functions of (p, ). Since the mapping for p is indepen-
dent of ¢, bifurcations of the system’s phase portraits as « passes through zero can

easily be analyzed using the latter form. Consider the first equation
p = p(1+a+a(a)p® + p*Ra(p)).

It defines a one-dimensional dynamical system with p = 0 as a fixed point for all

values of a. The fixed point losses it’s stability as o becomes positive. The stability
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of the fixed point at o = 0 is determined by the sign of the a(0). If a(0) < 0, then
the origin is stable at a = 0. In this case, the previous p—map has an additional

stable fixed point

for a > 0. Consider the second equation

¢ = p+0(a) + p°Qalp)

which describes a rotation by an angle depending on p and «; it is approximately
equal to 6(a). Thus, we obtain the bifurcation diagram for the two dimensional
system (2.2.3) by superposition of it’s polar form.

Also system (2.2.3) has a fixed point at the origin which is stable for & < 0 and
unstable for « > 0. The invariant curve of the system near the origin look like
the orbits near the stable focus of a continuous-time system for negative values of
a and like orbits near the unstable focus for positive values of a. At a = 0 the
point is nonlinearly stable. The fixed point is surrounded for o > 0 by an isolated,
unique and stable closed invariant curve which is a circle of radius po(«). All orbits
is starting outside or inside the closed invariant curve, except at the origin, tend to
the curve under iterations of (2.2.3). This bifurcation can be presented in (x1, 22, )-
space. The appearing family of closed invariant curves, parameterized by «, forms
a paraboloid surface. This is Neimark-Sacker bifurcation.

If a(a) > 0 can be analyzed in the same way. The system (2.2.3) undergoes the
Neimark-Sacker bifurcation at a = 0 but there is an unstable closed invariant curve

that disappears when « crosses zero from negative to positive values.[1]

2.2.3 Generic Neimark-Sacker bifurcation

We now shall prove that any generic two-dimensional system undergoing a Neimark-

Sacker bifurcation can be transformed into the form (2.2.3).
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Consider the system
v flr,q), z=(r,2)" €R* ,acR

with a smooth function f, where f has the fixed point x = 0 at a = Owith simple
eigenvalues 115 = e 0 < y < 7. By the Implicit Function Theorem, the system
has a unique fixed point x¢(«) in some neighborhood of the origin for all sufficiently
small | «v |, since = 1 is not an eigenvalue of the Jacobian matrix. We can perform
a parameter-dependent coordinate shift, placing this point at the origin. Therefore,
we assume without loss of generality that « = 0 is the fixed point of the system for

| a | sufficiently small. Thus the system can be written as
r— Ala)z + F(z,q) (2.2.4)

where F' is a smooth vector function whose components F} » have Taylor expansions
in x starting with at least quadratic terms, F'(0, «) = 0 for all sufficiently small | « |.

The Jacobian matrix A(«) has two multipliers
Hi2 = T(Oé)eiw(a)

where 7(0) = 1, ¢(0) = 6. Thus, r(a) = 1+ S(a) for some smooth function G(«)
such that 5(0) = 0. Suppose that 6(0) # 0. Then, we can use [ as a new parameter
and express the multipliers in terms of 5 : u1(8) = u(B), pe(B) = i(5), where

H(B) = (1+B)e"?

with a smooth function §(5) such that 6(0) = 6,.

Lemma 2.10. [1] By the introduction of a complex variable and a new parameter,

system (2.2.4) can be transformed for all sufficiently small | « | into the form

2z u(B)z+9(2 2 0), (2.2.5)

where B € RY, z € C', u(B) = (14+8)eP) | and g is a complex-valued smooth function
of z,z, and 8 whose Taylor expansion with respect to (z,Z) contains quadratic and

higher-order terms:

1
g(zvgaﬁ) = Z nglzk2l7

k+1>2
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with 1,k =0,1,2,....[1]

Lemma 2.11. [I] The map

Z sz + %22 + g112% + %22 +0(] 2 |?) (2.2.6)

where 1 = p(B) = (14 B)e® gii = g;;(8) can be transformed by an invariant

parameter-dependent change of complex coordinate

hQO h02 _2

2 —
— 220 h zoz
A w+2w+11ww+2w,
for all sufficiently small | 5|, into a map without quadratic terms:
w = pw + O(| w ),

provided that
ei90 7é 17 €3i90 7& 1

Proof: The inverse change of variable is given by

h h
w=z— %22 — h112Z — %22 +0(] 2 |?).

The new coordinate w implies that the map (2.2.6) takes the form

1

W = pw+ (920 + (= ) hao)w? + (g + (= | g [*)har )

1
+§(Qo2 + (1 — ) ho2)w” + O(| w |*).

Thus, by setting

920

oo — 911 _ Yoz
20 — 2 72 )

s 1002 —
1

7h11:
| > —p fi

we Kkill all the quadratic terms in (2.2.6). These substitutions are valid if the de-
nominators are nonzero for all sufficiently small 3 including 3 = 0. Indeed, this is

the case, since
§2(0) = ju(0) = e (&% — 1) £ 0,
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| 1(0) [ —p(0) =1 — €™ #0,
72(0) = u(0) = ¢ (3% — 1) £ 0
due to our restrictions on #y. ¢

Assuming that all quadratic terms are removed. Now, we will try to remove the

cubic terms.

Lemma 2.12. [1] The map

2 iz + %23 + %222—1— %222 + %23 +0O(] 2 1),

where = p(B) = (1 + B)e® g = g:;(B), can be transformed by an invertible

parameter-dependent change of coordinates

hao = h h h
D+ o+ —ww? + 2

FEwE 2 2 6

for all sufficiently small | 5 |, into a map with only one cubic term:

w — pw + cyw?o + O] w [*),

provided that
62i90 7£ 17 €4i90 7& 1.

Proof: The inverse transformation is

h h h h
803 Ty 22, T334 o] z "

YEET 2 2 6
Therefore,
N 1 1 _
W= pw + 6(930 + (o — u3)h30)w3 =+ 5(921 +(p—p|p |2)h21)w2w

1 B _ 1 _ _
"‘5(912 + (p— | p P)hi)we® + 6(903 + (1 — 1) ho3)@® + O(| w |*).

Thus, by setting

hao = 3930 By = — 912 ’ _ Yo3
B = p flpl?—p

03 — = )
i —p
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we can eliminate all the cubic terms in the resulting map except the w?w-term, which
must be treated separately. The substitutions are valid since all the assumptions
concerning fy. ¢

One can also try to eliminate the w?w-term by formally setting

g21
hyy = ——2L
p(1—=| p[?)

This is possible for small 5 # 0, but the denominator vanishes at § = 0 for all
0. Thus, no extra conditions on 6y would help. To obtain a transformation that is
smoothly dependent on 3, set hg; = 0, that results in

_om

C1 9

Lemma 2.13. [I] (Normal form for the Neimark-Sacker bifurcation)
The map

2= puz + %f + 91127 + %22 + %z?’ + %222 + %222 + %23 +0( 2 ")

where p = p(B) = (1 + B)e?® g = g:;(B), and 0y = 0(0)is such that e # 1
fork =1,23,4, can be transformed by an invertible parameter dependent change of

complex coordinate, which is smoothly dependent on the parameter,

h20 h02 _9

h h
z:w+7w2—|—h11ww+7w 4+ 208 =

gV T Wt

h03
e

for all sufficiently small | 5|, into a map with only the resonant cubic term:
w — pw + cyw?w + O(] w |*)

where ¢c; = c1(B). ©

The truncated superposition of the transformations defined in the two previous
lemmas gives the required coordinate change. First, annihilate terms. The coefficient
of w?w will be %§21, say, instead of % go1- Then, eliminate all the cubic terms except
the resonant one. The coefficient of this term remains %f]zl. Thus, all we need to

compute to get the coefficient of ¢; in terms of the given equation is a new coefficient



2. Bifurcation Of Fixed Points 50

% Go1 of the w?w-term after the quadratic transformation. The computations results

in the expression for ¢;(«)

~ gogu(p—3+2p) g [P | 9oz | 921
€= 2 7 0 2 _
2w —p)(p—=1)  1-p  2p*—p) 2
which gives, for the critical values of ¢y,
_ 920(0)911(0) (i = 3+ 2p0) | [ 9n1(0) * | | g02(0) |” L 921(0)
2(p = po)(fio — 1) L—jio  2(p§ — fio)

6o

C1 (O)

. (227)

where py = e

We summarize the obtained results in the next theorem.

Theorem 2.14. [1] Suppose a two-dimensional discrete-time system
r flz,a), reR*acR

with smooth function f which has, for all sufficiently small | o |, © = 0 as a fived

point with eigenvalues
prala) = r(@)etia

where r(0) = 1, ¢(0) = 6.
Let the following conditions be satisfied:

1. 7(0) # 0;
2. e £ 1 fork=1,2,3,4.

Then, there are smooth invertible coordinate and parameter changes transforming

the system into
<M>Hu+m<mww>—mmm><m>
Y2 sinf(8)  cos6(B) Y2
mww>—mﬂm><am—wm>(m
sinf(5)  cosb(p) b(B) a(p)

with 6(0) = 6y and a(0) = Re(e~*c,(0)), where ¢,(0) is given by the formula (2.2.7).

+(yi+u3) < >+0(H y ") (228)

Y2
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Proof: The only thing left to verify is the formula for a(0). Indeed, by Lemma
(5.3.1), (5.3.3) and (5.3.2), the system can be transformed to the complex Poincaré
normal form,

w = p(B)w +a(Bw | w P +O(|w ),
where d(f) = a(B) + ib(5) for some real functions a(3),b(3). A return to the real
coordinates (y1,yz2), w = y; + iys, gives system (2.2.8). Finally,

a(B) = Re(e=P¢y(B)).

Thus
a(0) = Re(e ¢ (0)). o

Theorem 2.15. (Generic Neimark-Sacker bifurcation)[1] For any generic

two-dimensional one parameter system
x> fz, )

having at o = 0 the fized point xo = 0 with complex eigenvalues my o = e there
18 a neighborhood of xo in which a unique closed invariant curve bifurcates from xg

as « passes through zero. ¢

Consider the map
r=Ax+ F(z), ze€R" (2.2.9)

where the Jacobian matrix A has simple pairs of complex eigenvalues of modulus
one, p19 = X% 0 < 0y < m and these are the only eigenvalues with | u |= 1 and

F(x) = O(|| z ||*) is a smooth function and and its Taylor expansion is
1 1 )
F(z) = 5B(,2) + £Clz,2,2) + O(| = [|Y)
where

0?X;(¢ PX;(¢
Z 85385 |£:o (zjye) and Ci(z,y,z ;1 8@85 |£:o (zjyx2)-
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Let ¢ € C" be a complex eigenvector corresponding to fu;:

Aq = e%q, Ag = e g,

Introduce the adjoint eigenvector p € C" satisfies
ATp — e*ieop, ATﬁ — €i90]7

and satisfies the normalization

<p,g>=1

where < p,q >= """, Pig; is the standard product in C". The critical real eigenspace

T corresponding to p o is two-dimensional and is spanned by {Re(q), Im(q)}. The

real eigenspace 7" corresponding to the real eigenvalues of A is (n— 2)-dimensional.

y € T*" if and only if < p,y >= 0. Note that y € R" is real, while p € C". Any

vector x € R™ can be decomposed as

rT=2zq+2zZq+vy

where z € C!, 2+ zq € T¢ and y € T®. The complex variable z is a coordinate on

T¢. We have
z2=<p,xr>

Yy=x— <p,xr>q— <p,x>q.

In these coordinates, the map (2.2.9) takes the form

F=eot <p Fleq+2G+y >

g=Ay+ F(zq+20+y)— <p, F(zq+27+vy) > q— <p, F(zq+ 20+ y) > q.

The previous system can be written as

4 1 1 1
zZ = 62902 + §G2022 + GHZE + §G0222 + §G21222+ < Gl(], Yy>z+ < G01,y >z

1 1 1
’g = Ay —+ —H2022 + HHZE + —H02§2 + —H2122Z

2 2 2
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where Gap, G11, G2, Go1 € C! and Gy, Gio, Hij € C™ and the scaler product is in
C.

The complex numbers and vectors can be computed by the following formulas
GQO =<p, B(Qa Q) >, Gll =<p, B(qa Cj> >, G02 =<p, B(Q) (.7) >, G21 =<p, C(q7 q, q) >
and

H20 = B(q, Q)— < p,B(q,Q) >q— < ﬁaB((LQ) > 67

Hll = B(‘L@)_ <p7B(QJCj) > q— <ﬁ7B<QJq_> > q

and

< Gro,y >=<p,B(q,y) >, < Go,y >=<p,B(q,y) > .

From the center manifold theorem , there exists a center manifold ¢ which can be
approximated as

1 1
Y = V(Z, 2) = 5’[1)2022 + w122 + 5’&)0222
where < ¢, w;; >= 0. The vectors w;; € C" can be found from the linear equations
(621'90[ — A)U}Qo = H20
([ — A>w11 = H11
(6_2i001 - A)w02 = H02

These equations has unique solutions. Note that the matrices (I — A) and (e*?? ] —
A) are invertible in C" because 1 and e*?% are not eigenvalues of A. Recall that
e% +£ 1. So z can be written as

=Mz 4 1G02% + G2z + 3G + 5[Gor +2 < p, B(q, (I — A)"'Hyy) >

+ < p, B(q, (e*T — A) ™ Hy) >]222 + ...

Taking into account the identities

B 1 ; B e~ L 1
(I-A)"q= 1— 6i00q> (1 — A)lg = eifo _ 1q’ (I—A)"q= 1 — ei@oq
and .
20 _ A\lg — e
(e )= q
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Also z can be written using the map

. 1 y
7 =¢%y 4 Z Fj!gkakzj (2.2.10)
k,l>2
where go0 =< p, B(q,q) >, 911 =<p,B(q,q) >, 902 =<, B(q,q) >
and

g21 =< D, O((I?Qa@) >+2 < p7B<Qa (I - J)_IB(Q7Q)) >

+ < p, B(g, (21 — J) ' B(q,q)) > +122") B(q,q) >< p, B(g,q) >

1—e™%0
0

_1_6%1'% ‘< b, B(qa (j) >|2 _63?0—0_1 |< b, B(‘Z Q) >|2 .
As e*% 5£ 1 the map (2.2.10) can be transformed into the form

Z=e"2(1+d(0) ] 2 |

Where a(0) = Re{d(0)}, that determines the direction of the bifurcation of the

closed invariant curve, can be computed by the following formula

—i0p 1-2 00 ,—2160¢
e 921) B Re(( e )‘e
2 2(1 — cito)

1 1
a(0) = Re( 920911) — B | g11 |2 1 | 902 ’2 .

This formula allows us to verify the nondegeneracy of the of the nonlinear terms at

a nonresonant Neimark-Sacker bifurcation of n-dimensional maps with n > 2.[1]

Example 2.5. Consider the map

i ( ) > _ ( fi(zy, z2, @) ) (i tata®tad) ( C?Sﬁ —sinf3 ) ( ) >
T2 Ja(@y, 29, @) sinf  cosf T2
(2.2.11)
where B = f(a) is a smooth function of parameter o and 0 < B(0) < 7.

Note that
0 0
w(5)-(5)

The Jacobian matriz of the system 1is

of  Of
_ oz oz
Tr=\ o o

aibl (9:E2
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where 3
a—fl = (1 + a)cosB + 3x3cosf — 2x1298i103 + w5083
T
8f1 . 2 . 2
pri —(1+ a)sinf — xisinf + 2x1x9c08 — 3w5810[3
af2 o . 2 . 2
el (1 4+ a)sinf + 3xisinf + 2z x9c085 + x551n
T
and p
8_fz = (1+ «a)cosf + xfcasﬁ + 2x1 295103 + ngcosﬂ.
X2

So the Jacobian matriz J fo(xy1, 22)T at the fized point (0,0)7 is

T cosfp  —sinf3
Jfa(0,0)" = (1 + ) < sinf  cos3 ) .

The characteristic equation of this matrix is
A —2X\cosf+1=0

Hence, the eigenvalues are A2 = (1+a)e and they have a modulus equal | A 5 |=|
1+ a|. Note that at o = 0, we get | A2 |= 1. So at a = 0 we have two complex
conjugate eigenvalues of modulus one. Hence, we have a clear sign that Neimark-
Sacker bifurcation maybe appear. The origin is stable if —2 < a < 0. To check if
the last two condition are satisfied, we write the map (2.2.11) in polar form (r,6).

We write equation (2.2.11) as two-dimensional system of difference equations

(“”“) ) = (1t o+ 23(n) + a3(m) ( s el ) (“’1(”)) (2.2.12)
+1)

sinf  cosf xo(n)

Let z1(n) = r(n)cosf(n), and xo(n) = r(n)sind(n). Substitute values of xq,xs in
equation (2.2.12), we get

O(n+1) = 6(n) + f. (2.2.13)
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We will study the bifurcation of the system at o = 0. Note that 0 is independent
of the parameter o and depends on 0 and 3. First equation in system (2.2.13) is a
one-dimensional map say hy(r) = (1 + «)r + r® which has fized point r = 0. This
fixed point is stable if —2 < a < 0 and unstable for o« > 0. At a =0,

7o (0) Ja=o= (1 + @) |a=0=1
h/o,e(o) ’a:OZ 0

and

RY(0) |a=0=6 >0
sor = 0 is unstable at o« = 0. Also the map ho(r) has an additional fized point
r = /—a which is unstable closed invariant curve for a < 0 which disappear when

a vary from negative to positive value.
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3. Dynamics of xp41 = #% o8

In this chapter we will study the dynamics of the rational difference equation
o+ an—k
A+ Bx, + Cx,_

where «, 5, A, B, and C are positive real numbers, the initial conditions z_j, x_j1,. .., Zg

n=01,2,... (3.0.1)

Tnt+1 =

are non-negative real numbers and k € {1,2,...}.

We will investigate invariant intervals, boundedness of solutions, two periodic cycles,
local and global stability of positive equilibrium points.

It is worth mentioning that equation (3.0.1) for k=1 and k=2 has been investigated
in [7], [2] and [6] and equation (3.0.1) has been investigated in [5].

3.1 Change of variables

Consider equation (3.0.1). Let z,, = 4y, then

A
Tpt1 = Eyn—s—I
and
A
Tpn—k = Eyn—k
Substitute in (3.0.1), we get
A o o+ /B%yn—k
Byn—H - A + B%yn + C%ynfk
A (5)(R)a + Byns)

BT (%)(B + By, + Cyp_k)

B, (R)a+ Byni
Ynt1 Z(B + By, + Cyp_k
B, (B)a+ Byns
Yn+1 = Z<B(1 Yyt %Z/n—k))
() + %yn—k
Ynt1 =

1+yn+%yn—k
Letp:%a,ngandr:%. We get

P+ QYn—k

, n=0,1,2,...
1+yn+7ﬁynfk

Yn+1 =
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3.2 Equilibrium points

In this section we find the positive equilibrium points of the rational difference equa-

tion
p + qYn—k
n — B TL:O,l,2,... 321
Yt 1+ Yn + TYn—k ( )
where p, ¢ and r are positive real numbers and the initial conditions y_x, y_x+1,---, %o

are non-negative real numbers and k£ € {1,2,...}.

To find the equilibrium point of equation (3.2.1):

D+ qy

(T

That is equivalent to
yA+y+ry) =p+ay
Rearranging the terms, we get:
(1+7)7*+(1-q)g—p=0.
The roots of this quadratic equation are:

(g— 1) £+/(g—1)2+4p(1+7)
2(1+r) '

j=
So the positive equilibrium point is

(q—1)+/(¢—1)2+4p(1+7)
2(1+r) '

g:

3.3 linearized equation

Let I be any interval of real numbers and let f : I x I — I be a continuously
differentiable function. Let y be an equilibrium point of f(z,y), p = %(g, y) and
q= g—;j(g, y). Then the equation

Ynt1 = DYn + QYn—k,n =0,1,2,. ..
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is called linearized equation associated with y,+1 = f(Yn, Yn—x),n = 0,1,2,... about

the equilibrium point ¥, and its characteristic equation is
)\k+1 _p)\k —q= 0.

To find the linearized equation of (3.2.1) about the equilibrium point g, let

_ ptay
f(x’y)_l—l—m—i-fr’y
oz Y (142 +ry)?
of . —(p+qy)
Since
7= p+qy
L+y+ry
we get
s
ox "’ 1+y+ry
Similarly,
of _ (L+z+ry)(g) — (p+qy)(r)
—(x,y)— 2
dy (1+z+ry)
ﬁ(_ j) = 4= Pray
dy vy (1+75+ry)?
(‘3_f@g):q—pr+q§+qm)—qr@
oy (1+7+ry)?
@<gg):q+q?)—r(p+qﬂ)+qm}
oy’ (1+75+ry)?
of . ql+g+77y) r(p + q7)
_(yay>_ — o — —\2
dy (1+y+ry) (I1+y+ry)
e R
oy’ l+g+ry 1+y+ry
O ()=
oy’ 1+y+ry

The linearized equation is

Iy, - 4= Yn—k =0
14+g4+ry”" 1+g+ry’"

Yn+t1 T
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and the characteristic equation is

)\nJrl + y A" — q—Try )\nfk -0
L+y+ry L+y+ry ’

which is equivalent to

AR y \E a-ry _
14+y+ry 1+y+ry

3.4  Period two cycles

o0

In particular, the solution {y,,}5°

has a prime period two if it takes the form

O 0,0,

where ¢, are distinct and positive.

Theorem 3.1. /5] Consider equation (3.2.1). Let k be an even integer. Then (3.2.1)

has no non-negative distinct prime period two solution.

Proof: Let k be an even integer. Assume that (3.2.1) has a two periodic cycle
{¢,9}, where ¢ and ¢ are distinct and positive solution. Note that since k is even

integer, x,,_r = T, # Tn11. The two period cycle satisfies:

PR qy
I+ +ry
and
p— P q9
1+ ¢+r¢
Substitute ¢ into the equation of ¢, we get:
+qy
b= P+ 4T g
o +qvp +qip
L+ 155 +rEis)

p= POV I +alp+ay)
l+v+rYv+p+q+rp+rqv
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(I+r+qg+g)*+ (A +p+pr—p—pr—a¢)—(p+aqp) =0.
That is equivalent to
(14102 + (1= ) —p =0,

The roots of this quadratic equation are:

_q—1E£ (1 —q?+4p(1+7)

v 2(1+r)
but

V=g +4p(l+r)>[qg—1].
So

_ q—1+\/(1—q)2+4p(1+7")

V= 2(1+r) '
Similarly,

b= q—14++/(1—q?+4p(1+7)

2(1+7r)
We have ¢ = 1 and this is a contradiction. So (3.2.1) has no non-negative prime

period two solution. ¢

Theorem 3.2. [7] Let k be odd integer. If ¢ < 1, then (3.2.1) has no non-negative

prime period-two solution.

Proof: Let k be any odd integer and ¢ < 1. Assume that (3.2.1) has two
periodic cycle, say {¢,1}. Since we assume k is an odd integer, x,.1 = p_ # Tp.
Sol

b= p+aqo
L+ +r¢
and
b= Ptav
1+ ¢+ry

From the equation of ¢ we have

P14+ +19) =p+qo

or

r¢* + ¢+ ¢ =p+qo
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and from the equation of ¥ we get
rg? +op ¢ =p+qu.
Subtract the last two equation, we have
r(¢? = 9?) —q(6 =) + (¢ — ) = 0.
Since ¢ and 1 are distinct, we can divide on ¢ — v, we get
pry=1"1
r

we have a contradiction since we assume ¢ < 1 which implies % < 0 but ¢ and ¥

are non-negative and distinct. <

Theorem 3.3. [5] Let k be any odd integer. Then (3.2.1) has a non-negative prime

period-two solution if and only if

¢g>1 and (r—1)(g—1)2+4pr* <0

Proof: Let k be any odd integer. Assume that ¢ > 1, (r—1)(q—1)2+4pr? <0

and (3.2.1) has a non-negative prime period-two solution say ..., ¢,1, ¢,1, ... such
that
PR 99
IL+y+ro
and
po P q¥
l+o+ry

By simple calculations, we get

r¢> + o+ ¢ =p+qo (3.4.1)

and
4+ o+ = p + qub. (3.4.2)
Subtract (3.4.3) from (3.4.1), we get

—1
p+v=1—.
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Take the square of both sides, we have

&+ 200+ = (127

or
-1
@+ 97 = (=) 260
Now, add (3.4.1) and (3.4.3), we get

_ W+ (= 1)(@+¢) —r(¢® + 47

o0 .
) (@=1% _ .((a=1y2 _ 9
g 2 2 = 2~ 200
_p
qw_l—r'

—4p7"2

Note that this is possible since r — 1 < < 0 which implies » < 1. Now, ¢ and

(g—1)2
1 are the positive roots of the quadratic polynomial

This quadratic equation has discriminant s which is equal s = (’1;—1)2 — 475 which

is equivalent to
(¢ —1)%(r — 1) + 4pr?
r2(r—1) ’

Since we assume that (r —1)(¢ — 1)? + 4pr? < 0 and ¢ > 1 which implies r < 1, we

get s > 0 and this proves that (3.2.1) has non-negative prime period-two solution
under the given two conditions. <

To study the stability of the two cycle {¢,}.

Let

Un = Yn—k

and

Zn =1Yn, n=0,1,2,...

Equation(3.2.1) corresponds to the following second dimensional system
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Un4+1 = Zn
P+ qun
il = " =0,1,2,....
1 14 2z, +rv,

Let F be the function on (0, 00) x (0,00) defined by:

v z
<z 14+z+4rv

( )
w
is a fixed point of F2(v, z) where

el V) Fi(v,2)
z Fy(v, z)
and Fi(v,z) = 1fzrf:nu and F3(v,z) = 1+Ffa?;)+rz‘

then

The two cycle ( :Z ) is locally asymptotically stable if the eigenvalues of the Jaco-

bian matrix JF? evaluated at < Z )7 lie inside the unit disk.

UL (¢ ) @w,w))
JF2: ov 0z
(%(W) O (¢, )

@(U 2) = q—pr+qz

o (T4 z+r0)?

OF, _q—pr+taqy

av (¢7¢)_ (1+¢+T¢)2’

Of (o prav

0z (14 z+7rv)?
OF; B p+qo

az (¢7¢)_ (1+w+r¢)27
OF, (0 + ¢2) 22 (v, 2)
—(v,2) = — .
v (1 + Fl(v,z)+rz)2
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Since F1(¢,¢) = ¢

§%¢M=— (p+aq¥)(g+qp —pr)

Ov (I+y+7r¢)(1+¢+ry)>
OF, gL+ Fi(v,u) +72) = (0 + g2) (Gt (v, 2) +7)
%(v,u) B (14 Fi(v,u) +1z)?
P, w)_q(1+¢+r¢>—(p+q¢)<—%+w
ou " (1+ ¢+ 1))
§EW¢O= (p+aq¥)(p +q9) q+qp—pr
ou T T A ok P+ v re? | (It o+ i)

We want to check if the eigenvalues of JF?(¢,) lie inside the unit circle. Let T
denote the trace of JF?(¢,1) and D denotes the determinant of JF?(¢,))
By theorem (1.7), it suffices to show that | T'|< 1+ D < 2. That is equivalent to

D<1 (3.4.3)
T<1+D (3.4.4)
—1-D<T (3.4.5)

To prove (3.4.3) we must show

(g +q—pr)(qg+q9p—pr)
(1+¢+r)2(1+ ¢ +rp)?

Let (¢ + q¥ —pr)(q+ qé — pr) be term 1 and (1 + ¢ + 7¢)*(1 + v + r$)? be term 2.
Observe that

(q+qp —pr)(g+a¢ —pr) = (¢ —pr)* +q(¢ + ) (g —pr) + ¢di
Recall that ¢ + ¢ = %1 and ¢ = -, so

—2rq” +r%¢*63priq — 2priq — p*r® + pr' — ¢ +r¢’ + ¢ — pr’¢® —qrp
r(r—1)

(g+qb—pr)(g+qo—pr) =
and

A+ o+ A +Y+r9)2 =1+ ¢+ + 0+ +rd+ ¢*r +r2g)?
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—pr? +qr+pr—q+¢
T

(L+ o472 (1+ ¢ +r¢)* = ( ).

Subtract term 2 from term 1, we get

—pr3q2 + 2q2r - q27“2 — q2 + 3p2r3 — 2p2r4 — 3rq3 + 3qpr3 — 5qu2

r2(1—r)
L 20rq 4 +2¢° +1qt —rp? — 2pr¢® — ' 4 12
r2(1—r)
_@Pp—rpta——rg+@r)rp—r*p—q+ ¢ +ar)
r2(1—r) '

But since ¢ > 1 and r — 1 < 0, we get
p—1p—q+@ +qr=rp(l —7)+qlg—1)+qr>0
and
20°p —rp+q— @ —rq+@Fr <2r’p—rp+q—qr+2q(r—1) — (r — 1) — 4dpr?.
From (r — 1)(¢ — 1)? + 4pr? < 0, we note that r — 1 < 0. So
:—QprQ—rp—i—(r—l)(q—l) < 0.

That shows D — 1 < 0 which is the first inequality.
Inequality (3.4.4) is equivalent to

(g—pr+q0)(1+ ¢+ 1% + (p+ q¥)(p + q9) + (g — pr + q@) (1 + ¥ + r¢)?

+(g—pr+qd)(g—pr+qb)+ A+ o+ (1+ ¢ +7r9)* <0.

Substitute ¢+ = q;—l and ¢7) = % and use the assumption ¢ > 1 and (r —1)(q —

1) + 4pr? < 0, after long calculations one can get
(@ —pr+a)(L+ ¢ +19°) + (p+ ) (p +q9) + (q — pr + qd)(1 + ¢ + 1¢)?

+g—pr+ad)g—pr+qb) + 1+ o+ (L+ 0 +719)* <0

This proves inequality (3.4.4).

The final inequality is equivalent to

(q—pr+q0)A+0+70)* + (p+qd)(p+ q) + (g — pr+ q@) (1 + ¢ + r¢)?
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+(g—pr+q)(g—pr+q) + 1+ U +qp)*(1+ ¢+ qv)? > 0.

Similarly, one can show that the previous inequality is a consequence of our assump-
tion.

This proves T+ D +1 > 0.
So ( z ) is a locally stable fixed point of F?(v, 2) and hence ¢, v is a locally stable

prime period-two cycle for (3.2.1) with odd integer k.[7]

3.5 Invariant Intervals

Definition 13. An interval S is an invariant interval of the difference equation
(3.2.1) if yn—k,-- -, Yn—1,Yn € S for some integer number N, then y, € S for all
n>N.

Theorem 3.4. [7] Consider the difference equation (3.2.1) with fized integer k and

{yn}se ;. as a solution. Then we have the following invariant intervals:

1. 10,0] when pr < q where b = q_1+\/m'

2r

2. [prqu7g] whenl<q<pr<q+£—;%.

r

3. (1,51 when pr > q+ é.

r?

4. 0, 2] when pr < q.

Proof:(1) Let b = Ity (5;1)2+4pr. Suppose pr < g and assume that ynx_p, ..., yn_1,Yn €
[0, ] for some integer number N.

Take the function
p+qx

g(x): 1+rx
i) = q(L+rx) —r(p+qrv)  q—pr

(14 rz)? (1+rz)?
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By assumption that pr < g,
G=>0
and
Yoy = — PGNP
T T yn Fryn—k L+ ryns -
but
glyn—r) < g(b) <b

That shows yny41 € [0,b]. The proof follows by induction.
(2)Assume that 1 < ¢ < pr < ¢+ % — L and yn—p, ..., yv-1,yn € [F2 1] for

T

some integer N.

Let
p+qy
T,y = —-.
fl@.y) 1+z+ry
of  qa—-p—qz
oy  (1+z+ry)?
Note that % > 0 when = > Z%. So f(x, y) is increasing in y for z >
P+ qQYn—k
I+yn +71Ynv—i

qp?”_q) p+pr—gq

= flyn, yn—r)

YN+1 =

g _1+’%2—7"—|—§
+ pr— r— r—
p pqq>p qq>p q.

q+; q+; q

YN+1 = f(

YN+1 >

Also

pr—q q r
yn+1 = flyn,yv—i) < f( . 7;):1 q:—(pqr
q r

The proof follows by induction.

(3)Assume that pr > ¢+ é and Yy, .., Yn-1, YN € [g’ 1%]

Note that f(x,y) = lf;rfiy is decreasing in y for x < pTqu since g—g =
P+ QYn—k
YN+1 = = f(yn, yn—r)

I+yn+rynv—i

‘r

pr—q
7

g—p—gxr

(atry)?
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pr—q pr—q ptpr—q
> =
> pr+p—q ¢
YN+l Z 7~ — -
tptpr—q) v
Also 2
q q pr—+q pr—q
_ yn—i) < f(=,5) = < .
YN+1 f(yN Yn k)—f(r 7’) r4q+qr q

The proof follows by induction.

(4)Assume that pr < ¢ and yn_g, ..., yn—1,yn € [0, %].

yaay = PN
YT fyn + ryns
(% + yn—r)
YN+1 =

r(2+ Lyn +ynvoi)
Since pr < g,
q(; + yn-1)
(4 fyn + yn—s)
a(z tynv—r) g
T r(t 4 yng) o
The proof follows by induction. ¢

Ynt1 <

3.6 Boundedness

We will study the boundedness of the solution of (3.2.1)

Theorem 3.5. [5] Every solution of (3.2.1) is bounded.

Proof: Let {y,}>% . be asolution of (3.2.1). We need to show that the solution

is bounded from above and from below.

If the solution is bounded from above by some constant M, then it is bounded from

below since
p

> =k k4 1,....
I vy ALl +
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We will use contradiction to show that the solution is bounded from above. Assume

not. So we can find a subsequence {y,,, }5°_, such that
m — 00, Ny, —> 00, Yn,, +1 — OO

where
Ynpt1 = maz{y, :n < ny}t, m>0.
But (3.2.1) implies
Yni1 <P+ QYnk, 120,
So
lim y,, +1 = lim y,, = o0.
m—r0o0 m—0o0

Take sufficiently large m

0 S Ynm+1 — YUnp—k = — YUnpm—k

— p + [(q - 1) - ynm B Tynm_k]ynm_k
L+ Yn,, + TYn—k

<0

and this is a contradiction. This proves that the solution is bounded from above.

3.7 Global Stability

In this section we investigate the global stability of the positive equilibrium point
of (3.2.1). While we do that , we need some results.

Lemma 3.6. [7] Let [a,b] be an interval of real numbers and assume that f : |a, b] X
[a,b] — [a,b] is a continuous function satisfying the following properties:
1. f(x,y) is non-increasing in x € la,b] for each y € [a,b] and f(x,y) is non-
decreasing in y € |a,b] for all x € |a,b],

2. The difference equation has no solutions of prime period-two in [a,b].
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Then (3.2.1) has a unique equilibrium y € [a,b] and every solution converges to y.

Theorem 3.7. Assume that
pr<qand r>1 (3.7.1)

Then the equilibrium point of (3.2.1) § is a global attractor of all non-negative so-
lutions of (3.2.1).

Proof: We have shown in theorem (3.4) that in this case [0, ] is an invariant
interval and all non-negative solutions of equation (3.2.1) lie in this interval since
0<y, <Zforn=12,...

Counsider the function

_ ptaqy
ﬁ(x )= — ptay ﬁ@ y) = q+qr—pr
Oz 1+ +ry)? Oy (1+z+ry)*

So f(z,y) is decreases in x and increases in y in [0, Z]. The assumption r > 1 implies

(r—1)(qg —1)* + 4pr* > 0.

By theorem (3.3), equation (3.2.1) has no solution of prime period two in [0, ].

So if we have two positive real numbers m and M in [0, 4] which satisfies the following

equations:
p+qM _ ptgm

:1—|—m—|—TM’ m_l—i—M—i—rm
Then m = M.

Lemma (3.6) implies that (3.2.1) has a unique equilibrium point € [0, 4] and every
solution of equation (3.2.1) converges to . Thus 7 is global attractor of non-negative
solution of (3.2.1). o

Theorem 3.8. [5] Assume either
<1 or q>1,(r—1)(qg—1)*+4pr* > 0.

Then the equilibrium point i is globally asymptotically stable.
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3.8 Numerical Discussion

Example 3.1. Assume equation (3.2.1) holds. Take k = 3,p = 0.8;q = 1.5 and
r = 0.5. Equation (3.2.1) becomes

0.8 + 1.5y,
Yot = — oY g p o

Consider the positive initial conditions are yo = 0.1,y; = 1.1,y = 0.2 and y3 = 1.

The positive equilibrium point is

1.5 —1++/(1 —1.5)2+4(0.8)(1 +0.5)

— 0.91574017.
2(1+0.5)

g:

Theoretically i is stable since ¢ = 1.5 > 1 and (r — 1)(1 — ¢)* + 4pr? = 0.675 > 0.
Figure (3.2) show that lim, ooyn = y. This also shows y is globally asymptotically
stable.

stabile fixed point

1 WWMWWM
=

n-iteration

Fig. 3.1: Figure shows that the fixed point is globally asymptotically stable.

Example 3.2. Assume equation (3.2.1) holds. Take k =1,p=4;q =5 andr = 0.5.
FEquation (3.2.1) becomes

4 + 5yn71
1+ vy, +0.5y,_1

Yn+1 = n=0,1,2...
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Consider the positive initial conditions are yo = 0.1 and y; = 1.1.

The equilitbrium point is

5—1++/(1—5)2+4(4)(1+0.5)

v 2(1+0.5)

= 3.44154843

This fized point is unstable since g =5 > 1 and (r — 1)(1 — ¢)* + 4pr* = —4 < 0.
Figure (3.1) shows that § is unstable.

unstabile fixed point
10 T T

x{n)
@ o~ @ w
T T T T

- [CR] = [
T T T T

| | | | I |
0 10 20 30 40 50 60 70
n-iteration

Fig. 3.2: The equilibrium point is unstable.
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In this chapter we study dynamics and bifurcation of the positive fixed point of the

nonlinear second order rational difference equation

p"_ qYn—1
1 + Yn + T"Yn—1 ’

We consider the saddle-node, period-doubling and Neimark-Sacker bifurcation.

Yni1 = n=0,1,2,... (4.0.1)

P+qYn—1

4.1 Dynamics of y, 11 = FETT=—

In this section we study the stability of the fixed point of equation (4.0.1). Recall
that the discrete difference equation (4.0.1) has the unique positive fixed point

g—1++/(1—q)2+4p(l+r)
2(1+r)

y= :
In order to convert equation (4.0.1) to a second dimensional system with three
positive parameters p, ¢, and r, let v, = z,_; and w, = x,. We have the following

system

Up41 = Wy
D+ qup
Wpy1 = — n=0,1,2,.... 4.1.1
i 14w, + ru, ( )

System (4.1.1) has the unique positive fixed point (u*, w*)T = (y,4)”. Convert this

system into second dimensional map

pl )2 ) . (4.1.2)
w Ja(u, w) Thottra
We need to find the Jacobian of F'(u,w). Note that

o
a0
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ofi

=1

ow ’
0fs _ qt+quw—rp

ou  (1+w+ru)?

and
of _ p+qu

ow (14w +ru)?

The Jacobian matrix is

0 1
JF(U’ ’LU) - gt+qw—rp pF+qu

AFwtru)2  — (Itwtru)?
0 1
JF(U7 w) |(Z77?7): q+qy—rp p+qy
(4g+r9)2  ~ (+yg+ry)?

Note that in chapter 3 we show that

_qtqy—rp  q-—Ty

det(JF(F,5)) = ___ 4=y
t(JF(5:9)) Q+g+r9?  1+5+r7

and

N TR
(147 +ry)? l+y+ry
where det and tr denote the determinant and trace of the Jacobian matrix J, re-

spectively.

Substitute the value of ¢, we have

q—1++/(1—q)2+4p(1+r)

det(JF(F, 7)) = ———— 20147) _ 2 —qr—r+ry(1—q)+4p(1+7)
’ —14+/(1—q)2+4p(1+7) 1 1 1—q)2 + 4p(1 ’
1+ (1 +7)* ) (T+7)(g+1++/(1—q?+4p(1+1))

q—14+/(1—q)2+4p(1+7)

1 (JF{.5) = — 2(1 ) B 1—q—\/(1—Q)2+4p(1+7")
9 - 7 N2 r - _ 2 )

L (1 p) (VG teiin)y - (L4 n){g+ 1+ V= +4p(1+7))

Theorem (1.7) implies that the fixed point (7,%)7 is asymptotically stable if the
following inequality holds

| tr(J) | -1 < det(J) < 1 (4.1.3)
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where J is the Jacobian matrix evaluated at this fixed point.

Theorem 4.1. [5] The equilibrium point y of (4.0.1) is locally asymptotically stable
iof one of the following holds

1. ¢ <1

2.q>1and (r—1)(g—1)*+4pr* > 0.

Proof: We want to show that

q—ry (]
| —— <1

- - - <2
1+y+ry I+y+ry

That is equivalent to

y q—ry
= —+ | — - |<1 and ————
I+y+ry I1+y+ry IT+y+ry

The first inequality is equivalent to
lg—ry|<1+ry. (4.1.4)

If g —ry <0, then(4.1.4) becomes ry — ¢ < 1 + ry and this is obvious .
If g—ry >0, then(4.1.4) becomes ¢ —ry < 1+ 1y
or

qg—1<2ry. (4.1.5)
If ¢ <1, then (4.1.5) holds. If ¢ > 1, then
Vg =12 +4p(1 +7)

r+1

and if (r — 1)(q¢ — 1) + 4pr? > 0, multiply both sides by r + 1 we can get

ry > >ry/(q— 1) +4p(1+7)
(r* = 1) (g —1)> +4pr*(1 +7r) > 0.
Rearrange the terms of the previous inequality, we get

r*((q =1 +4p(1+7)) > (¢ — 1)%.



P+qyYn—1 79

4. Dynamics And Bifurcation Of yn 1 = 17—

Take the square of both sides, we obtain

/(g — 12 +4p(1+7) > (¢—1).

Now, add r(q — 1) for both sides, we have

r(g— 1+ (q— 12 +4p(1+7) > (r+1)(¢—1).
That is equivalent to
2r(r+ 1y > (r+1)(¢—1)
or
2ry > q — 1.
This shows in this case inequality (4.1.5) holds and hence
g q— T’g |

——— — < L.
IT+y+ry I+y+ry

Note that the second inequality 1 — 5 < 2is always true.

g
1+g+r
So in both cases the equilibrium point g is locally asymptotically stable.

p+qyn71

4.2 Bifurcation of y,.1 = E—

Inequality (4.1.3) is equivalent to the following three inequalities

e det(J) <1
o det(J)>tr(J)—1
o det(J) > —tr(J)—1

These three inequalities determine the stable region of (7,%)? in the plane.

Saddle-node bifurcation happens in the trace-determinant plane when det(J) =
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tr(J) — 1. So the fixed point (7, 7)” of the system (4.1.2) undergoes a saddle-node
bifurcation if
det(JF(g,9)) = tr(JF(9.9)) — 1

or

—2¢—qr—r+ry/(1—q?+4p1+r) 1—qg—+/(1—q)2+4p(1+r)

(I+7r)(g+1+/A—q?+4p(1+7))  (A+7r)(g+1++/(1—q?+4p(l+r))

That is equivalent to

—2q—qr—r+7r/(1=q)?+4p(l+7r)=1-q— /(1 g +4p(l+7) —g—1

—V (=g +4p(1+7r)—qr—r—ry/(1—q)> +4p(1 +7)

or

(2r +2)1/(1 — )2 +4p(1 +7) = 0.

That implies 2r +2 =0 or (1 — ¢)? + 4p(1 +r) = 0.

If 2r +2 =0, then r = —1 and this is impossible since r is a positive parameter.
If (1—q)*+4p(l +7) =0, then p = —f&;‘ff) < 0 and this is also impossible since p

is positive parameter.

Theorem 4.2. The fized point (§,5)" of the system (4.1.2) undergoes a period-
doubling (flip) bifurcation when p = % if g > 1.

Proof: Assume that ¢ > 1. Period doubling bifurcation occurs if det(JF (3, 9)T) =
—tr(JF(y,9)) — 1.

That is equivalent to

—2¢—qr—r+ry/1—q?+4pQ+7r) 1—qg—+/(1—q2+4p(1+r)

A+r)(g+1+VA—q2+4p(+r)  (A+n)g+1+/T—q2+4p(+r)

or

—2q—qr—r+ry/(1 —q)2 +4p(1 +7) = —1+q¢+/(1 — ¢)2 + 4p(1 +r)—q—qr—r—1

V(1= q)? +4p(1+7) = /(1 — q)? +4p(1 + 7).
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That implies

—2¢+2+2r\/(1 —q)2 +4p(1+7)=0
Divide both sides by 2, we have

—q+1+7/(1—q2+4p(1+7r)=0.

Rearranging the terms, we get

V(1 —q)2+4p(1+7)=q— 1. (4.2.1)

and this is possible since we assume g > 1.
Take the square of both sides of equation (4.2.1), we get

(1= q)* +4p(1+7)] = (¢ — 1)°
or

(1 = 1)(q — 1)* + 4pr*(1 +7) = 0.
Since r > 0, 7 + 1 # 0 so we can divide into 1 + r. We obtain

(r—1)(g—1)*+4pr* =0

(1-7r)(g—1)
472 '

Note that the fixed point (7,%)7 is asymptotically stable if ¢ > 1 and (r — 1)(q —
1)2 + 4pr? > 0 and unstable if ¢ > 1 and (r—1)(q— 1)2 T 4pr? < 0.

Now we consider the Neimark-Sacker bifurcation which is present when the Jacobian
matrix has two conjugate eigenvalues with modulus one. This is corresponding to
the case

det(J) =1 (4.2.2)

and
—2<tr(J) <2

on the trace-determinant plane.
Equation (4.2.2) holds if

—2¢—qr—r+7ry/(1—q)+4p(1 +7) B

(L+7)(g+1++/(1—¢)2+4p(1+ 7))
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That is equivalent to

2 —qr—r+rV/(1—q2+4dp(l+r)=q+q +1+7+/(1—q)2+4p(1+7)

+r/(1—q)? +4p(1 +7)

or

—(3¢+1) =2r(g+1) = /(1 — q)2 + 4p(1 + 7).

This can not happen since ¢ > 0 and » > 0. So the system can not undergoes a

Neimark-Sacker bifurcation at the fixed point (7,7)”

4.3 Direction of The Period-Doubling (Flip) Bifurcation

In this section we will find the direction of the period doubling bifurcation of system
(4.1.1) at p = (A=n)g=1)* Firstly, we shift the fixed point (7, %)? to the origin. Let

4r2

Tp =Un — Y, Zn=Wn—Y.

System (4.1.1) will be

Tp+1 = Zn
p+q(z, +7) _
Zpgl = — — 4.3.1
A S s (4:3.1)
or
Yo =AY, + G(Y,) (4.3.2)
where
0 1 n
Ty ___ Y 2z
1+g+ry 1+g+ry n
and

G(Y) = BIY) + SOV, Y) +O( Y ),

Bl(y’”) and C(Y,Y,Y)z(
Y) Co(Y,Y,Y)

B(Y

Ci(Y,Y,Y) )
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where
2 8%Y; 2 93Y; (¢
Bi,y) = 33 s Gl le=o (w5yx) and Ci(w,y,2) = 351 ssese le=o (@50071).

So Bl(¢a¢) =0 and Ol(¢a77b777) =0
Ba(, %) = — 28D 1oy + 2L [pris + o] + 2 s o,
and Cy(, 9, n) = 6%@%% + (ifyf:y?s [P101m2 + Pathomn + Pripam]

+ lzfyf:g (190212 + B2th1m2 + Prebama] — #@)3%%7&.

Now, we find the eigenvectors of A and A7 corresponding to the eigenvalue A = —1 at
the bifurcation point p = % Recall that at this bifurcation point 2ry = 1—gq.
Let q and p* be the eigenvectors of A and AT corresponding to the eigenvalue A = —1,

respectively. We have Aqg = —q and ATp* = —p*. The first equation can be written
as (A= XMN)g=(A+1)g=0

1%3@ L= 1+5+r17 e 0

where ¢ = ( N > Let ¢ = 1, the first equation ¢; + ¢2 = 0 implies ¢o = —1. So
42

tak <1>
ake g ~ :
-1

Note that the vector above satisfies the second equation 1qu quy q+(1— #;W)qg =0
(1-r)(g=1)?

o 2ry = 1 — q. Also in order to have a

non zero solution of the system(A + I)q = 0, the matrix A + I must be nonsingular.
— =Ty _

That means [ A+ I |=0or1— 7= — 70 =

The second equation can be written as (AT — AI)p* = (AT + I)p* =0 or

1= 1+y+ry1 Ps 0

since at the bifurcation point p =
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where p* = ( pi ) Take p; = 1, the first equation p} + 11;:%]3; = 0 implies
)
* q=ry
P1= Tyt

_ 9Ty
Note that this eigenvector p* ~ < Hf”g ) satisfies the second equation

" y "
+(1————)p5=0.
Pt (L= g P
Now, we normalize p* and q.
22 ¢—1y
<ptg>= T = —————— —
b — bid I+y+ry
—i5 1 1+g+ry
_ Thg+ry _ _ _ ltgtry
Take p = ¢ * | where & = =

The critical eigenspace T corresponding to the eigenvalue A is a one-dimensional
map and is spanned by the eigenvector q. Let T*" denote a one-dimensional linear
eigenspace of A corresponding to the other eigenvalue than A. Note that the matrix
A — M which is equivalent to the matrix A + T has common invariant spaces with
the matrix A, we conclude that y € T*" if and only if < p,y >= 0. Any vector

x € R? can be decomposed as

T =uq+y
where uq € T¢, y € T*"* and
u=<px>
y=x—<p,x>q. (4.3.3)

In the coordinates (u,y), the map (4.3.2) can be written as
= M+ < p, F(uq +vy) >,

§=Ay+ F(ug+y)— <p,Flug+y) > q. (4.3.4)

Using Taylor expansions, (4.3.4) can be written as

1 1
ﬁ:Au+§au2+u<b,y>+6(5u3+...,



4. Dynamics And Bifurcation Of y,4+1 = % 85

1
g = Ay + 5au2 + ..., (4.3.5)

where u € R,y € R?,0,0 € R!,a,b € R? and < b,y >= 3., by is the standard

scaler product < b,y > can be expressed as
<b,y>=<p,Blq,y) > .

The center manifold of (4.3.5) has the representation

1
y="V(u)= §w2u2 + O(u?),

where wy € T C R?, so that < p,w >= 0. The vector w, satisfies
(A—Dwy+a=0

Note that the matrix A — I is invertible in R? because A = 1 is not an eigenvalue of
A. Thus, we have
Wo = —(A — I)*la

and the restriction of (4.3.5) to the center manifold takes the form

1 1
U= —u+ QUUQ + 6((5 —3 < p,Blg,(A—1)""a) >)u’ + O(u?)

where 0 =< p, B(q,q) >,0 =<p,C(q,q,q) > and a = B(q,q)— < p,B(q,q) > q.

Using the identity (A —I)"!q = —%q, the restricted map can be written as
i = —u+ a(0)u® + b(0)u® + O(u?), (4.3.6)

where
a(0) = = <p,Blq,q) >

and

b(0) = é <p,C(q,q,9) > —i(< p, B(q,q) >)* — % <p,B(q,(A-1)"'B(q,9)) > .

The map (4.3.6) can be transformed to the normal form

§=—6+c0)8+0(¢h
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where

c(0) = a*(0) + b(0).

Thus, the critical normal form coefficient ¢(0) allows us to predict the direction of

bifurcation of period-two cycle. ¢(0) is given by the following invariant formula:

1 1 B
(0) =5 <p.Clg,0,9) > =5 <p, Blg, (A= 1) 'B(g,q)) >

If ¢(0) > 0, then a unique and stable period-two cycle bifurcates from the fixed point
at the bifurcation point p = (A-n-q)*

472
0
B(gq,q) = _ r(g—ry) _9_2rj—q )
(14+g+ry)2? +2(1+y+Ty) (14+y+ry)?

_ _ltgtrgp_ r(g=ry) _ 2rj—q

<pBla:9) >= =50 2 R 2wy
0
C(q.q,9) = ( 2(g—rg )
X r¥(q=ry) _ q 4qr 612y 2q—61y ’
Osyrae 3(1+y+ry)3 + 3(1+y+ry)3 + 6(1+y+ry)

_ 1+y+ry 2(q—r7) Aqr—6r2g 2q—6ry
<p,Cl¢,0,9) >= — 557 [6(1+y+ry) — 3 T 3 g T 6(1+y+ry) I
(A— I)fl _ _1_ 1 i — 145ty -1 - 1+g+rg -1
a=ry | _ _ ¥ 2y gy _q ]’
L+g+ry L+g+ry L+g+ry
_ r(g— Ty) (127"17—11)2
_ Gbri (44192 +2 - +y+ry
(A-D)"'Blg.q) = =57 | (o (T“ |
(1+g+rg)*+ m (1+g+ry)?
-1 gy [ O
B(q,(A—1)"'B(q,q)) = =5 S
— [2rlg=rY) r(q—ry) ] 2rj—q
where § = [7020 + artmel [ 20hgmme + 2amse — 2aeep)

y r(g=ry)(2ry—q)

-1 _ (¢—r)*
<p Blg,(A-1)7"B(¢,9)) >= 2rmgarmrar 2@ 27t (g

+
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2ry—q
(q+14+9)(A+g+rg)?

4.4 Numerical Discussion

In this section we give numerical examples which support our results in the previ-
ous sections. Figures that we get using Matlab will be attached with example to

illustrate the bifurcation.

Example 4.1. Consider equation (4.0.1). Fix the parameters p, r and consider q
as bifurcation parameter.
Take p=1,r=0.9 and 0 < ¢ < 10. Equation (4.0.1) becomes

1+ qyna
1+ Yn + O-9yn71 ’

The planer form corresponding to equation (4.4.3) is

yi(n+1)\ y2(n) (4.4.2)
Y2 14+y2(n)40.9y1 (n)

q—14++/(1—q)2+3.24
3.8

Theorem (4.2)determined the bifurcation point at (r — 1)(1 — q)? + 4pr* = 0. So

Yo = n=012... (4.4.1)

Positive equilibrium point of system (4.4.4) is (y,y) where § =

the fixed point undergoes a period-doubling bifurcation at ¢ = 6.69209979. See figure
(4.1).

Example 4.2. Consider equation (4.0.1). In this ezample we fix the parameters q,
r and consider q as bifurcation parameter.

Take g = 1.1, r =0.09 and 0 < p < 2. Equation (4.0.1) becomes

p + 1-1yn71
1+ yn + 0.09y,-1

The planer form corresponding to equation (4.4.3) is

pt )\ _( w) "
(n+ 1) B p+1.1y1(n) o
Y2 1+ya(n)+0.09y1 (n)

Yni1 = n=0,1,2,... (4.4.3)
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Period-doubling bifurcation

parameter q

1+qyn—1

Fig. 4.1: Period-doubling bifurcation of the map y,+1 = TrynT0.05n=1

q is a parameter.

Positive equilibrium point of system (4.4.4) is (§,7) where § = 2VD0+2.500 W. Theo-

rem (4.2)determined the bifurcation point at (r —1)(1 —q)* +4pr? = 0. So the fized
point undergoes a period-doubling bifurcation at p = 0.2808642.

1 0.39539749
q= and p= :
-1 —0.60460251

B(g,q) = "
¢4 0.71303782 |’

< p, B(q,q) >= —0.43110446,

0
C » q, == )
(0. ( —0.4797597 )

< p,C(q,q,q) >= 0.2900639,
—1 1
(A-I1'=
0.65397924 —1.34602076

B(q,(A—=1)"'B(q,q)) = ( 0'8;2105 ) :
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<p,B(q,(A—1)"'B(q,q)) >= —0.49947486
c(0) = 0.20139345 > 0

So this verify that a unique and stable period-two cycle bifurcates from the fized point
at the bifurcation point p = 0.2808642. See figure (4.1).

Period-doubling bifurcation

i)

05+

0

L L L L L L L L L
0 02 04 06 08 1 12 14 16 18 2
parameter q

p+1.1yn—1

Fig. 4.2: Period-doubling bifurcation of y, 1 = THy,570.09i 5

, P is a parameter.
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In this chapter we will study the dynamics of the third order rational difference

equation
p + qYn—2
1+ Yn + TYn—2

Yn+1 = (501)

with positive parameters p, q and r and non-negative initial conditions y_»,y_; and
Yo-

Then we will find the type of the bifurcation which exists at the point where the
stability exchange.

5.1 Dynamics Of The Rational Difference Equation

Ynpl = PFqYn—2
7’L+1 1+yn +Ty7z—2

Consider equation (5.0.1). Equation (5.0.1) has the unique positive fixed point
_q—144/(g—1)2+4p(14r)

- 2(1+r) :
In order to convert equation (5.0.1) to a third dimensional system, let z, = y,, x, =

Yn—1 and t,, = y,_2. We have the following system

D+ qly
1+ 2z, +1t,

Znt1 =
Tpt1 = Zn
tyny1 = Tp (5.1.1)
System (5.1.1) has the positive fixed point (7,7, 7). In order to shift this fixed point

to the origin, let w,, = z, — y, v, = , — ¥y and u,, = t,, — y. The system becomes

o — P+ q(un +9) 5
T (w4 9) + r(un +7)

Un41 = Wy

Upt1 = Up (5.1.2)
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System (5.1.2) has (0,0,0) as a fixed point.

The Jacobian matrix of system (5.1.2) is

_ p+q(wn+7) q(1+wn+g)—rp
A+ wn+g+r(un+7))? (I4wn+g+r(un+7))?
J(w,v,u) = 1 0 0
0 1 0
__ ptqi q+qj—rp ¥ 0 —a=r¥
(1+y+ry)? (1+g+ry)? 14+g+ry 1+g+ry
J(0,0,0) = 1 0 0 = 1 0 0
0 1 0 0 1 0

The characteristic polynomial of the Jacobian matrix J is

y 2 ="y
e o ‘ 5.1.3
p(A) 1+g+ry L+y+ry o
Let plzﬁ%,pgzoandpsz_ﬁgﬁﬁ'

Theorem (1.8) implies that the zero solution is asymptotically stable if

|p1 + p3 |< 1+p2 and |p2 — P1DP3 |< 1 —pg. (514)

Inequality (5.1.4) implies that the zero solution is asymptotically stable if

2T (5.1.5)
1+y+ry 14+y+ry
and ~ ~ ~
Y q—Ty qa—TY 2
X — (—)~. 5.1.6
|1—|—ﬂ—|—7‘ﬂ 1—|—§—|—7’g| (l—l-g—i-rgj) ( )
Inequality (5.1.5) is equivalent to
1+—2 27 o (5.1.7)

I+y+r5 1+g+77
and - -
Y q—ry
T 4+g+ry 1+y+ry
and inequality (5.1.6) is equivalent to

> 0, (5.1.8)

Y % q—-ry q—-ry )2

—~ > 0, 5.1.9
L+g+ry  1+§+ry 1+§+ry (5.1.9)
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and

y a—ry =Ty o
— X - > 0. 5.1.10
l+g+ry  1+7+ry (1+gj+rgj) ( )

Inequality (5.1.7) always holds since

1 i q—ry  1—q+2(1+1)y
+ — - — = - = -
l+y+ry 14+y+r1ry 1+(1+nr)y
. _q144/(q- D)2 +4p(1+r)
Substitute § = 2 It (;(li)j#p(yr ) We get
L—g+(g—1+Va— 12 +4p(+r) _, V-1 +d0+r)
Ltg+y/(a—1)%+4p(1+r) g+ 1+4++/(¢—1)2+4p(1+7)

2
Also inequality (5.1.8) holds for all values of the parameters p,q and r since

Y g-—ry __ l+gq
l+y+ry 14g+ry 1+(1+r7y

. _ —14++/(q— r
Substitute § = 2 DV DR Hp0) -y get

2(14r)

1+¢q - 1+¢q

=9 >0
Lraty/(a-D2+Hap(+r) g+ 1+ /(¢ —1)2+4p(1 +7)
2

Inequality (5.1.9) is equivalent to

q—ry Yy q—ry ]

1+ —— — — ——
Il+y+ryl+y+ry 1+y+ry

> 0. (5.1.11)

Note that we take 11;% as a common factor. Now, add —1 to both sides of

inequality (5.1.11), we have

— 1 7 —
¢—ry (A+n)y—q,

— ——— 1 (5.1.12)
1+y+ry 14+y+ry

Multiply both sides of (5.1.12) by &ﬁ%, for (1 +7)y —q < 0 we have

q—ry 14+y+ry

<
l+g+ry q—(1+1)y

Inequality (5.1.10) is equivalent to

> —1

q—17 A Tl
l+y+ry1l+y+ry 1+y+ry
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or

q—ry —Yy—q+ry o
145475 1+5+77
Note that for (1 4+7r)y —q¢ < 0, ry —y — q < 0. So if we multiply both sides of

(5.1.13) by % we have

1. (5.1.13)

q—ry <1+§—|—ry
L+y+ry q—ry+y
Note that for rgy —y —g<ry+y—q <0,

O<q—ry—y<q—ry+y,

and hence

Ltytrg _14g+ry
g-ry+y q-ry—y
= £ q-rg 14+5+rg —rg 14541y
So for g — (1 +r)y > 0 if 1%#@ < qug then ljgﬁg < qj%% and hence for
q— (1 +7)y > 0 if inequality (5.1.10) holds, then inequality (5.1.9) holds.

Note that if ¢ — (1 + )y > 0, we have

g—1+/lg= 17+ 4 +7)

>0
2(141r)

q— (L+7)(

or

q—1+\/(Q—1)2+4p(1+7“)
7= 2

q+1—+/(g—1)2+4p(1+7)>0

>0

q+1>+/(q—1)2+4p(1+7)

take the square of both sides, we get
CA20+1>¢ —2¢+1+4p(1+7)

or
4qg > 4p(1 + 1)

q

< .
¥ 1+r
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So for p < I the zero solution is asymptotically stable if

-1y I+y+ry
a-ry _ yrry

— - — (5.1.14)
14+y+ry q—ry+7y

Note that if we fix q and r and choose p as a parameter where p < %, then

the stability is exchange at the value of p that satisfies equation lj_;_’gg = ;J_rf;:g

Name this value as p*.

5.2  Bifurcation Of The Rational Difference Equation

y — p+qyn72
n+l 1+yn+7ﬂyn72

In this section we find the type of bifurcation that occurs at p = p* as p is the
bifurcation parameter. Recall from previous chapters that equation (5.0.1) has no
positive distinct periodic solutions of prime period two. We focus our attention on

Neimark-Sacker bifurcation.

Theorem 5.1. The characteristic polynomial (5.1.3) p(\) has two complex conju-

gate roots if one of the following cases holds

1. g—ry<0
2. 735 > w (k)
Proof: B B
p(A) =X~ 1+gy+ rg)‘Q 1 qu;jryrg
BA) = —3)2 — zﬁ

PA) =0 at \f = —3(35255) or A5 = 0.

Since g > 0, A < M. p(A) has local minimum value at A = A} and local maximum
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value at A = Aj. Note that lim,_,_ p(A) = oo and limy_,o, p(A) = —c0.

So p(A) has only one real root if one of the following cases holds

1. p(A}) > 0 and hence p(Ay) > p(A}) > 0.

2. p(A;) < 0 and hence p(A\}) < p(X;) <0 .

So p(A) has two conjugate complex roots if one of the following holds

*\ 4 y 3 —ry
L p(N) = —5mms) + e > 0

2. p(\}) = 11;:% < 0.

Consider case one. Note that p(0) = 11;:% >0 and p(1) = -1 — 1+;7+rg + 11;:%.
(g=1)+4p(1+r)

. h
pEVRY/ pey RV < 0. So p(A) has a

Substitute the value of 3, we have p(1) = —

real root ¢ such that & € (0,1).

In the second, case by similar argument we can show that p(A) has a real root of
modulus less than one. Note that p(0) < 0 and p(—1) > 0 in this case.c

Consider the case where 115—73«@ > (3 +gy +ng)3' We will find where the conditions of
Neimark-Sacker conditions hold.

Theorem 5.2. For p < L., the characteristic polynomial p(\) has two com-

T+r7
plex conjugate roots of modulus one and a real root of modulus less than one at
p = p* where p* satisfies the equation —=r = XU 0 5 3 Moreover, if p* >

1+y+ry q—ry+y )
—(13r24+16r—7)+1/(13r2+16r—7)2+4(6r—9) (9r3+16r2+7r) 2
(2(1+7‘)< 203+ 16:7 ) —(g—-1) | —(g—1)
4(14r)

, then Netmark-Sacker

conditions hold.

To prove this theorem we need Viete formula.

Theorem 5.3. [1/(Viete formula) Given any polynomial of degree n, say

P(z) = ap2™ + ap_12™ ..+ a1+ ag
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with roots ry,rs, ... ,r,. Vieteformula say that

An—
riH+ro+ ...+, = -2

an

(rirg +rirs+ ...+ 1) + (rers + rorg + .4 1rory) + oo rpgr, = 222

an

(rirars +rirara+ ... rirery) + (rirsra +rirsrs o F s o T 1Ty =

__Gn-3

an ’

rirors ... Ty = (—1)”2—2.

Proof of theorem (5.2): Consider that ¢ > 3 and p < .. Note that for
p < =L, we have ¢ — (1 +7)y > 0 and hence ¢ — 7y > §. Recall that 1 > (-—Z—)?

r? L+g+ry
SO
4 _
> ()
2071+ y+ry
and A -
_ Y 2-
> _—
i> 7 g Y
SO A B
= Y 2
—ry>y> —(———
1> ) Y
multiply by ﬁ, we get
q—ry 4 y 3

T+g+ry 27 1+g7+rg) '
So in this case the characteristic polynomial has two complex conjugate roots and
another real root of modulus less than one as we have shown in the proof of theorem
(5.1). Now we will show that the modulus of the conjugate roots equals one.
Let A1, Ay and A3 be the roots of p(A) where \; and Ay are the conjugate roots and
A3 is the real root. Recall that A3 = £ has modulus less than one.

Apply Viete theorem to p()\)

Y 2 q—ry
A) = =\ — A
- Trg+rg  L1+gtry
ag = 1_?_;-73@7 a1 = 0, a9 = _#_—H‘g and as = _1'
_ Y
At Az s = (5.2.1)

C1+gtry
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q—ry
I+y+ry
Ao + AAs3 + A3 = 0. (5.2.3)

)\1)\2)\3 == (522)

If A\; and Ay has modulus equal one then A\ Ay = 1. From (5.2.2) we get

q—ry

Ag = ———.
I+y+ry

Substitute A3 in equation (5.2.1), we get

q—ry y

M+t —— =
YT gty 14g+1y

q—ryty
14+g+ry
Also substitute A3 in equation (5.2.3), we get

A+ A = (5.2.4)

1 1ty 4ry
A3 q—ry
That implies
qg—ry  1+y+ry
l4+y+ry q—1y+7y

This shows that at p = p* where p* satisfies (=12 = ;”_Lf;’_"g, P

conjugate roots of modulus one and a real root of modulus less than one for p < .

As p is the bifurcation parameter and q and r are fixed, the bifurcation point is p*

(A) has two complex

which satisfies
q—ry  14+y+ry
L+g+rg q—ri+7

(L+g+ry)?=(¢—rj+u)(q—ry)

L+r)°y* + 20+ 1)y +1=¢" —qry+qy— qy +r°y" =1y’

(14+3r)7* + (21 +7r)+q2r — 1)y — (¢* — 1) = 0. (5.2.5)

Equation (5.2.5) is a quadratic equation has the following roots

20+ ) +q2r=1) £ /21 +7) +q2r —1))2+4(¢> — 1)(1 + 3r)
v 2(1+ 37) '
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Since 3 > 0, for ¢ > 1

—2(1+7r)+q2r—1)+ /1 +7r)+q(2r —1))2+4(¢> — 1)(1 + 3r)
2(1+43r)

y:

Substitute the value of ¢, we have

q—1+4/(q—1)2+4p* (1+71) _ —(2(1+7)+q(2r—1))+4/(2(1+7)+q(2r—1))2+4(q>—1) (1+3r)
2(14r) - 2(1+43r)

" —(2(147)+q(2r—1))++/(2(1+7r)+q(2r—1))2+4(¢%2—1)(1+3r)
\/(q —1)2+4dp*(1+7) = 1—q+2(1+r)< - v 2(1+3r)q : >

—(2(14+7)+q(2r—1))++/ (A +7r)+q(2r—1))2+4(q2—1)(1+37) ; \ 2
<1 o q_|_2[1 +TH (2( )+4q( ) \/( 2((1_,_;)57,)(1( ) (q )( ]) o (q o 1)2

4(1+r)

*

p:

To check if Neimark-Saker bifurcation exists at p* we must show that e*?" £ 1
for k =1,2,3,4 and 7(p*) # 0 where Ay 5 = cos0* £ isin 6*.
To show that e # 1, let A\ = cosf + isinf and A = cos@ — isin @ be the complex
roots of p(A) at p*. Substitute A in p(\), we have

oY ey _a=ry
1+y+ry 1+y+ry
or B B
My—Y e 47 g (5.2.6)
IL+y+ry I+y+ry
Recall that at p* 11;;% = ;’_Lg;g so equation (5.2.6) becomes
_ T
My Y e VT, (5.2.7)
I+y+ry q—ry+y
By similar argument substitute A in p()\) we get
_ Tl _ 1 Tl Tl
My Y e VT, (5.2.8)
IL+y+ry q—ry+y
Multiply equation (5.2.7) by A? we have
7] 1+y+ry<
QU Tt T ) C ) (5.2.9)

1+y+ry q—ry+y
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Also multiply equation (5.2.8) by A?, we have

_ U 1 Tl Tl
h vy _ VT (5.2.10)
l+y+ry q—ry+y
Add (5.2.9) to (5.2.10), we get
_ Tl 1 Tl Tl _
At A+ 2(—2 Y 2 Lxy =0 (5.2.11)

1+g+rg q-r15+7

Note that A+ A = 2cosf and \2 + )2 = 4cos? 6 — 2.
Equation (5.2.11) becomes

] 14y +ry

2cosf + 2 N ——7(4cos?0 —2) =0
1+y+ry qgq—ry+y
or
1+vy y y 1+vy y
(YT 0520 4 20080 42— ) 42— LYy g (5.2.12)
q—ry+y L+y+ry q—ry+y
From equation (5.2.4) o
Apao 1-TY
I+y+ry
2C0892—w-
IL+y+ry
That implies
Lg—ry+y
cosf = ——(——2).
2' 1+y+ry
Note that this is a root of equation (5.2.12) since
L+g+rg., 1 g—rj+7 1 q—rg+7 J 1+ 471y
—4( —|—y+ry)( —><q ry+y)2+2< —><q Ty +y 9 Y 9 ty+ry

q—rg+g" 2 1+G+ry 201 4g+ry L+ gtry q—ry+y
24 =TI Y L, Yy 21+§+7’§
I+y+ry IL+y+ry q—ry+y
_q-ry +1—|—§+r§ B
L+g+rg q—ri+7y

:2(

Note that - j;ﬁg <lorq—rj<1+i+ry. Toshow this note that

2(0) =0

0<d4p(l+r)
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add (g — 1)? to the both sides, we get
(¢—1)* <(q—1)"+4p(1+r)

note, take the square root of the both sides

g—1<+(qg—12+4p(1+7)

g—1 (g—12+4p(1+r)

<
2 2
or
-1+ —1)2+4p(1
f—1< V(g =12 +4p(1 + )
2
or
g—1<(1+4nr)y
and hence,
g—ry<l+y
SO
q—ry<l+y+ry
and hence, -
97"y,
1+y+ry
: +y+ry _ _q—ry 1
Since q_fﬁg = 1qug+z7/~g <1, cosf < —3.

Also, note that % < ig—;jg. To show that we will use that for ¢ > 3, we have

2 — g < 0 and then
2—q
1+7r
multiply both sides with 4, we have

<p

8 —4dg < 4p(1+r)
add (g — 1)? to the both sides, we get

¢ —6g+9<(qg—1)*+4p(1+r)
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(q—3)°<(g—1)*+4p(1+r)

take the square root of the both sides. Since we take ¢ > 3, we get

¢—3<+(g—12+4p(1+7)

add g — 1 to the both sides

2q—4<q—1+\/(q—1)2+4p(1—|—7“)

g—2<(14r)y
and hence,

qg—2<(143r)y
or

q—ry+y<2+2y+2ry

1 - 1+y+ry
2 q-ryty
Since % < Hft:y, cosf > —1.
1 14+y+ry —ry . -
So at p* where 3 <_ q__fg+z = 1-‘ig+yrg < 1, there exist 6y € (3,m) such that
—1 < cosby = —%(‘{;;Z_’:;Z) < —1%. Note that e*® £ 1 for k = 1,2,3,4.

To check if 7(p*) # 0, it is enough to show that % |lp=p+# 0.

NN Y e, 47T
Py Ltg+ry  1+g+ry
d|X|? d()\S\) d\  —d\
dp |p=p*: dp ‘p =p* [ d_+)\d ] ‘p =p*
dp(_ d\ dp(A) d\
- MBS L),
dp dp(\) A)
Note that ol -
dA 1+y+ry
To find 22X , note that
_ _ 1 1 1
d g (1 + Yy + Ty) X m X 2 % \/(4*1)2+4p(1+7‘) X 4(1 - T)

dp 1+y+ry (1+7+rp)?
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- 1 1 1
_y(l 1) X e X 2 X g < AT
(1+y+ry)?
B 1
(1+g+7r9)%/ (g — 1) +4p(1+r)
Also
_ _ . 1 1
i( g— 1] - (I14+g+7ry) x —rx TETIIRe P e x4(1+r)
dp 1 +7y+ry (1+75+ry)?
. 1 1
_(q rg) x (14) 2041 25/(q=1)2 +4p(147) X A1 +T)
(1+y+ry)?
_ r B (L+7)(g—ry)
A+7+r)/(@—1)2+4p(1+7) (A +7+7r9)2%/(q— 12 +4p(l+7)
Now,
o 1 /\2 o r . (1+7)(g—r7)
d| ]| 3 ( (1+5+r9)2/(g—1)2+4p(1+7) (+5+r9)y/ (@12 +4p(1+r)  (1+5+r)%/(a—1)>+4p(1+7) )
dp —3)\2 — 21+y+ry>\

_ 1 2 r (1+7)(g—ry)

+)\< (1+5+77)2/ (a—1)2+4p(1+r) (1+g+r7)/ (a—1)2+4p(1+r) (1+§+7’g)2\/(q1)2+4p(1+r)>
—3)2 — 21+ A
y+ry

At p* A\ = 1, so we have

_ 1 2 _ r _ (1+7)(g—ry)
dlX] ( (1+5+75)2\/(a—1)2+4p(1+7) (1+7+77)/ (a—1)2+4p(1-+7) (1+y+ry)2\/(q1)2+4p(1+r)>
- 303 _9 2
dp 3A 1+y+ry)\
. 1 2 r _ (+r)(g—ry)
A
(14+5+r9)2/ (a—1)2+4p(1+r) g4y (=D +4p(tr)  (45+r9)°/ (=) +4p(1+)
* —3)\3 — 2 A2
1+y+ry
_ 1 )\2_ T _ (A+r)(g—ry) _35\3 2 7)\2
= <( +7+r9)2V(@=D2+4p(i+r) A+5+r9)V(@=D2+4p(+r)  1+5+r)2V/ (= 1)2+4p<1+r))( it )>
(3N =21 L =A%) (=3N3 -2 L= 02)

(- 1 N2 r o (A+7r)(g="ry) )(73)\3 2 7)\2)

+< (4+7+r5)2V/ (g—1)2+4p(1+r) <1+y+ry>\/(q 1)2+4p(1+r> <1+y+ry>2\/<q 1)2+4p(1+7) T )
—T__32) :
1+y+r

—3X3—-2-—Y __)2)(—3\3-2
2%
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The denominator is non zero term since

(—ax—2—L 3o Ny 94— (AN HA(—L )2

I+y+ry I+y+ry I1+y+ry 14+y+ry
* Y ry+y
At p" A+ A= -2 +y‘7irz, so the denominator becomes
9_6y(q—jy+?y)+4( Y yp_g_g ylg —rg) PV
A+g+ry)?  L+y+ry A+g+ry)? 1+y+ry
7 rYy) —ry
Note that 1erJrTg<lso ~(15555)? > —land — 1+Z¢+ri:)2>_1iy+€~y‘
So B B B B
L R YR . P
(14+g+ry)? 1+y+ry I+y+ry
: q=ry
and since at p* 7 i < 1,
4= 9s9-6-2=1>0.
I1+y+ry

It remains to show that the numerator is non zero term.

The numerator is

(_ 1 2 _ r _ (1+7)(g—ry) ) <_
(1+g+rg)2\/ (g—1)2+4p(1+7) (A+7+79)\/ (a=1)2+4p(1+r)  (1+5+77)2/ (a—1)2+4p(1+r)
Y Y 1+

30— )\2> ( 1 2_ " a (147)(g=r9) )
1+y+7"y (1+7+r9)2 4/ (q—1)2+4p(1+7) A+g+r9)/ (a=1)2+4p(1+r)  (1+7+r9)2/ (—1)2+4p(1+r)
( 3% — 9 )\2>

1+y+ry

_ 3 X ( 3r 3(1+7)(g—ry) )
(1+y+ry)2\/(q71)2+4p(1+r)( A+ A+g+r9)/ (a=1)2+4p(1+r)  (1+5+717)24/(q—1)>+4p(1+r)
A3L3 2y 2(147) (g—ry)y > 2222 45 _
( + )+ (1+§+7‘§)2\/(q71)2+4p(1+r)+(1+§+T§)3\/(q71)2+4p(1+r) ( T )+(1+17+T‘17)3\/(q71)2+4p(1+7")

Recall that at p* 11;377 = ;J_rg;:g . Also at p*, A+ X = 2cosby, A2+ N\ =

4cos? Oy — 2 and A% + A% = 8cos® 0, — 6 cos by where cos by = —%(%)

The numerator at p* is

_ 3(g—rg+y) _ 3r(g—ry+y)3 _ 3(1+7)(g—rg+5)?
A+7+r9)34/ (=12 +4p(1+r)  (14F+r9)*/ (¢=1)2+4p(1+r)  (A+5+r9)*/(g—1)>+4p(1+r)
9r(g—rg+7) 9(1+1) 2rg(g—ry+9)*

(1+5+77)24/ (g—1)2+4p(1+7) + (A+7+r9)2y/(q=1)2+4p(1+r) — (1+5+r5)*/ (a—1)2+4p(1+r)
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1+yn+ryn—2
2(147r)(q—ry+79)y o 4ry 4(1+r)y
(1g+r9) /(a1 +4p(14r) (1454792 (a2 +ap(1+r)  (14+5+19)2(a—r5+)1/(a—1)2+4p(1+7)
1y

(+5+77)34/(q—1)2+4p(1+r)

1

Note that —1 < cos#* < —% which implies that 1 < =24 < 9 and —

1+y+ry A
1
T 1ty
The numerator is greater than
— 6 _ 12(14) + 9r + 9(1+r)
A+7+r9)24/ (=12 +4p(1+r)  (A+5+r9)2y/(q—1)2+4p(1+r)  (A+7+r5)/ (q—1)2+4p(1+r)  (1+G+r5)24/ (g—1)2+4p(1+r)
21y + 2(14r)y _ 4ry o 4(1+7)y
(47479)%/ (=12 +4p(1+7)  (1+5+r9)3y/(q=1)2+4p(1+r)  (14+5+719)2/ (a—1)2+4p(1+7)  (1+5+75)3/ (q—1)2+4p(1+7)
45
(14+7+r9)3/ (g—1)2+4p(1+r)
B 2(1—n)y 6+3(14+7r)+2ry
(+g+79)3/(g— 12 +4p(L+7r)  (1+7+7g)*/(¢—1)? +4p(1+7)
9r

(5.2.13)

+ .
(L4+7+7r9)v/(q—1)2+4p(1 + 1)
Term (5.2.13) is positive if 2(1—r)g— (64+3(1+7)+2ry) (1+y+ry)+9r(1+y+ry)* > 0.
That is equivalent to (9r® + 16r* + 7r)y® + (13r* + 16r — T)y + 6r —9 >0

or

. —(13r2 +16r — 7) 4+ /(13r2 + 167 — 7)2 + 4(6r — 9)(9r3 + 1612 + 7r)
Y 2(9r% + 1612 4 Tr) '

Substitute the value of g, we get

q—1++/(g—1)2+4p*(14r) —(13r2+16’r‘—7)+\/(137“2-1—167"—7)2—1—4(67‘—9) (9r341672+7r)
307 > 2(9r3 1162177

multiply the both sides by 2(1+r) and then add —(q — 1) for the both sides, we get

Vig—12+4p(1+7r) >
— (13724160 —7)4++/ (1372 +16r—7)24-4(6r—9) (9r3+1612+7r)
2(1+ T)< v 2(9r3 1 16r2177) ) —(¢—1)

take the square of the both sides, we obtain
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(q—1)*+4p*(1 +71) >

—(13r2+16r—T7)++/ (13r24+167—7)2+4(6r—9)(9r3-+16r2+7r) 2
<2(1 +7)( v 2(9r5+16r2+47r) )= (g~ 1>)

add —(q — 1)? for the both sides and then multiply by T 1+1")’ we get

—(13r24+16r—T7)++/ (13r24+167—7)2+4(6r—9)(9r3+1672+7r) 2
. (eoen( e )-a-1) - -1
p

414 )

If term (5.2.13) is grater than zero, then % lp—p=> 0 and then Neimark-Sacker

bifurcation conditions are satisfied.

5.3 Direction Of Neimark-Sacker Bifurcation

System (5.1.2) can be written as

Yoo1 = JY, + G(Y,) (5.3.1)
i EEEe W
where J = 1 0 0 and Y, = [ wv,
0 1 0 Up,

G(Y)=3B(Y,Y) +3C(YV. YY)+ O(| Y |I°)

Bi(Y)Y) C1(Y,Y)Y)
By(Y,Y) C3(Y,Y, V)

n 92X, (¢ n 03X,
Bi(z,y) = ng 1 agjagk |§ o (zjyx) and Ci(z,y, 2) = Zj,k,l:l Wag le=0 (Tjyr21)
Bi(¢,¢) = 1+z/+iyy))z P11 — e O3ts + qq+(;+jy12g[¢3wl + $1¢s],

B2(¢7 %D) = B3(¢a ¢> = 07
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Ci(g, . m) = %%%nﬁ%(¢1¢1773+¢31/11771+¢1+1/J3m> W(%%%‘F
G313 + ¢3¢3771) mqﬁs%ﬁs’

CQ(¢7¢777> = 03(¢77v/}777) =0

Recall that 6y = cos™!( —2('11%%). Let q and p* be the eigenvectors corresponding
to the eigenvalues A = cos 8y +isinfy = €% and XA = cosy —isinfy = e %, respec-
tively.

To find q we solve the equation

(J —eIg=0 (5.3.2)
or
__q-ry _ i0 y
e Sl U o R el 0
1 —et 0 @ | =10
0 1 —eto 03 0
T
where ¢ ~ | ¢ |. Let g2 =1, the second equation becomes
a3
q1 — e =

which implies ¢; = € and the third equation implies

1—e%gy =0.
¢t
We get g3 = e~%. We have g ~ 1 . Now, we must verify that this eigen-
)
vector ( satisfies the first equation (— ljgﬁg — %) g + #;qu?) =0 or

(- q - Ty __ eif)eito 4 _@ et —
I+y+ry IT+y+ry
Note that equation (5.3.2) has a nonzero solution if the matrix J — e[ is singular

matrix which means | J — e[ |=0

O R VTS —) (5.3.3)

J—eP] = (——F—
| =1 I+y+ry 1+y+ry
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Equation (5.3.3) is equivalent to
et <<_—q Y eyt 4 S _e*ieo) =0
I+y+ry I+y+ry

which implies B B
(-1 iyt Y it
1+y+ry I+y+ry
So q satisfies the first equation.

To find p*, we solve the equation (J — e~ I)Tp* =0 or

_ 9Ty _—ib *
45 € 1 0 Py 0
0 —e o 1 ps | =10
] _ —1i6 *
T g+ry 0 e p3 0
P
where p* ~ | p5 |. Let p; = 1. From the second equation we get
Ps

—e P 11 =0

which implies pj = €% and from the third equation we get

y N

— = pr—e =,
T+y+rg
L4+ ,—ifo
]
We get pi = Hg—;’”’e*wo. To show that this choice of p* ~ eifo satisfies

1
the first equation, note that | (J — e~ )T |= 0 implies

(- q—ry i) 2it (] _
1+g+77 L+g+ry

The previous equation is equivalent to
eI ey LT i o) g
L+g+ry L+g+7y

which implies

(A= iy L TETT iy

_ — - )—l—ew”:O.
14+y+ry Y
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So p* satisfies the first equation.
To normalize q and p*, we must find ¢ such that < (p*,q >= 1, where < .,. > is
the standard scalar product in C3.

1+y+ry
(——e

—i0p 4 2672'90

3
<(ptq>=C() piai=

=1

Tack ¢ = 1 So take p = ( *x p*. We have < p,q >= 1.

ITyFTY ,2i00 4 9¢—00 *
The critical real eigenspace T° corresponding to Ao is two-dimensional and is
spanned by {Re(q), Im(q)}. The real eigenspace T corresponding to the real eigen-

values of J is one-dimensional. Any vector € R? can be decomposed as
rT=2zq+zq+y

where z € C!, zqg € T¢ and y € T°. The complex variable z is a coordinate on T°.
We have
2 =<p,T >,

y=x—<p,x>qg— <pxr>{q.
In these coordinates, the map (5.3.1) takes the form
=2t < p,Glzq+ 25 +y) >,

g=Jy+G(zq+ 20+ y)— <p,G(zq+ 24+ y) > q— < p,G(2q + 24+ y) > q.

The previous system can be written as
S _ b 1 2 b, ] 22 -
z=e"2+ §G2OZ + GHZZ + éGOQZ + §G212 2+ < Glo,y > z+ < Gm,y >z,
. 1 2 N 2.
Yy = Jy + §H2()Z + HHZZ + §H022 + §H212 z
where
G?O =<Dp, B(Q> Q) >, Gll =<p, B(qa Cj >, GOZ =<Dp, B(Qa (I) >, G21 =<p, C(qa q, Q) >
and

HQOZB(Q7Q>_ <pJB<Q7q> >q_ <puB<Q7Q) >q—7H11 :B<q7(j)_ <p7B(QJq_) >q_ <p7B<Q7q_> >
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and

< Gl(]?y >=< p7B(q7 y) >, < GOlay >=< po(qa y) >

where the scaler product is in C3.
From the center manifold theorem , there exists a center manifold W*¢ which can be
approximated as

1 1
Y = V(Z, 2) = 5’(1)2022 + w122 + 511)0222

where < ¢, w;; >= 0. The vectors w;; € C* can be found from the linear equations
(¥ 15 — J)wao = Ha,

(I3 — J)wi = Hu,
(6_2i90[3 — J)WQQ = H02-

These equations has unique solutions. Note that the matrices (I3—.J) and (e*%% [;—
J) are invertible in C? since 1 and e*2% are not eigenvalues of J. Recall that ¢ # 1.
So z can be written as

Z = ez 4 %GQOZZ + Guzz + 3Gz + %[Ggl +2<p,Blq,(I —J)'Hy) > + <
p, B(q, (e*%1 — J)"YHyg) >]2%2 + .. ..

Taking into account the identities

1= D)= g @ =)= e (-0 =
q 1—6190% q cifo _161, J) 4 1—ei90q
and :
(621'90[ — ) lg= e o
9= ei@o _ 1q
Also z can be written using the map
. 1 .
z= 61602’ + Z k'—j'gkakij (534)

k,>2

where gy =< p, B(q,q) >, 911 =<p,B(q,q) >, 902 =<, B(q,q) >

and go1 =< p,C(q,q,q) > +2 < p,B(q,(I — J)'B(q,q)) > + < p, B(q, (**I —
e—100 (1_92¢i0 B N

J)"'B(g,q)) >+ < p, B(q,q) >< p, B(¢,7) > — 2w |< . B(4.7) >|?

1—ef0 1—
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S |< p, B(3.,q) >|*
The map (5.3.4) can be transformed into the form

Z=e"2(1+d(p") | 2|

where p* is the value of the bifurcation parameter p where the Neimark-Sacker bifur-
cation exists and the real number a(p*) = Re(d(p*)), that determines the direction of
bifurcation of the closed invariant curve, can be computed by the following formula

—if i60) ,—2ifo
« 921 (1 —2¢e")e 1 1
a(p®) = Re( 5 ) — Re( 2(1 — cito) 920911) 5 | gu1 |? 1 | 9oz |7

Now, we compute a(p*). Recall that gog =< p, B(q,q) >

2 <q—r37> €290 —27“?672“90 +2qr—2 (7"2—1—1) Y
(14+5+77)?
0

0

Where B(q,q) =

_ LIy e, <2qe2’90 +2qr — 2(r? + 1)y — 4rg cos 290)
g20 = (1 + g+ ry)
or ‘
1 2qe?% + 2qr — 2(r* + 1)y — 4ry cos 290)
g20 = - -
€% + 2t (L+y+ry)?
2 <q—rg) —2rg+2 <qr—(r2+1)gj> cos 260
. _ (1+y+ry)?
g11 =< D, B(qa Q) >a Where B(Q? q) = yO !
0
So
B Cl + 9+ rgje_wo (2(q —7ry) — 2ry + 2(qr — (r? + 1)y) cos 290)
Mty TEETE
or
) 1 2(g —ry) —2rg +2(gr — (r* + 1)g) cos 290)
11 — 37,9() + 2 (1 +y+ry)2

1+y+ry
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2ge=2190 —4rj cos 20+2 (qrf (r2+1)>

_ _ (1+5+rg)?
go2 =< p, B(q, q) > where B(7,q) = yo ’
0
50
Cl +T+1Y i, <2qe‘2i90 — 4drycos20 + 2(qr — (r* + 1)))
=(—"—e
90 7 (1t +rp)
or A
B 1 2ge~%% — 4rycos20 + 2(qr — (r? + 1)))
Jo2 e300 2#;@ (1+7+rp)? .

g2 =< p,C(q:4,9) > +2 < p,Blq,(I = J)"'B(q.q)) > + < p,B(q, (e**] —
e—ie _ ei@ _ _
D) B(q,q)) >+ < p B(g,q) >< p, B(¢,q) > — 125 1< p, B(q.7) >

1—et%0

ei@ _
— = 1< 0, B3, 3) >

(—6(q—7g)—4r2(q—rg)+8r7)e’?0 +(45—8r(q—rg)+6r2F)e =00 +(25—4r(q—rF)) e300 + (4rg—2r2 (g—rF))e %0 ‘

(1+g+ry)3
Clg.4,9) = 0
0
<p.Clq,q,7) >= 1 (= 6la—ry) = 4r%(g — ry) + 8rg ) ei®
b, q,9,9 - e3ifo 21+y}?+rg (1 +y+ Tﬂ)3

+

<4gj —8r(qg—ry) + 6r2g) e~ 1 (2@ —4r(q— rgj))emo + (47‘3] —2r?(q — rgj))e‘“’o
(1+y+ry)? '

The second term in gy is < p, B(q, (I — J)™*B(q,q)) >

-1

drety g __ ¥ Loty G v

1+g+ry 1+y+ry q+1 q+1 q+1

-1 B _ | 14g+rg l+g+i G
(=) 1 1 0 q+1 q+1 g+l
0 1 1 I+y+ry  1+q+y  14g+y

q+1 q+1 q+1
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1 2(q—rg)—2rg—2(qr—(r2+1)g) cos 26,

q+1 14+g+ry S
— -1 7) = 1 { 2(g=r§)—2rj—2(gr—(r2+1)§) cos 26o .
(I=J)"Bl¢.q) = g+l 1+g+ry =15
1 2(g—ry)—2rg—2(qr—(r>4+1)g) cos 20p IS
q+1 14+g+rg

2 <q—r37> Setf —2rgSe=10 42 (qr—(r2+1)7j> S cos 26p

—
Blq,(I - J)"Blg.)) = R
0
1 2(q —ry)Se’ — 2rySe"
< p.Bla,(T - ) Blg,q) 5= b AL IS = 2ry5e
e + 29 (1+7+ry)
2(q’r — (r*+ 1)@)5603 20,
_'_
(1+7y+ry)?
2i6 q—ry y !
) e+ 1+y+ry 0 T 14y+ry
(62290] _ J)—l — -1 62i90 0
0 -1 %o
e4i90 Y Y 2169
1 1+g+ry 1+g+ry
— 246, 446, =Ty _ ,2i0 Y
“D| ¢ ¢ Foat Ty
236 —ry 416 —ry 20
1 e e e A ee e L

where D is the determinant of the matrix (eI — .J) such that D = e (20 1

q—ry )_ Y
1+5+r7 o+
L _4ify
De
246 —1 _ L 2i0
(eI —J)" Blg,q) = | ge*™
L
D
2 <q—7‘y) €210 —2rge—21%0 4.2 <q7"—(7"2+1)37>
where L =

(1+7+ry)?
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L ( 2(g=rg)e**0 —2r5e’®0 + (gr—(r>+1)7) (>0 e~ *%)
D (1+g+ry)?

B(q, (e*™I — J)"'B(q,q) = 0
0

<p, B(q, (e 1-1)"'B(q,q)) >= £< 1 ><2(q—ry)63“’0—2mje“’0+(_qr—_(r2+1)17)(e5“0+e—i90))_

D\ e3P04+2F— (1+y+rg)?

a(p') = Re(“5* < p,e(¢.4.q) >) + Re(e™™ < p,Blq.(I = J)'B(g.q) >) +
Re(=2 < p,B(q, (e¥] — J)™*B(q,q))) >). Now, we find the first term N; =

2
e < p,Clq,q,q) >

Ny = ( 3 )(_G(Q—rﬂ)—4r2(Q—r@)+8rﬂ_|_(4T?—2r2(q—7“ﬂ))6’4i90 (4y—8r(q—ry)+6r°g)e—*%
1 3100 12 1+y+ry (1+g+rg)3 (1+g+ry)3 (14+g+ry)3
(2y—4r(qg—ry))e*%

T gy )-

Multiply the numerator of N; by the conjugate of the denominator, the numera-

tor becomes

<4r@—2r2(q—r@>> T4 (4g—8r(g—ry)+6r°g) e+ (4rg—2r* (q—17)) e 0+
(—6(q —rg) — 4r*(qg—rg) + 8ry)e™% + (47 — 8r(q — 1) + 6r°9) rop=e % + (2 —

dr(qg—ry))e " +(=6(g—ry) —4r*(q—ry) +8ry) gz + 20 —4r(q—79)) Tz €

Let F} denotes the real part of the previous term

F = (4rg7 —2r%(q — ry)) cos 70y + (45 — 8r(q — 1Y) + 6r*y) cos 50y + (4ry — 2r?(q —
r)) 1+y+r’ cos 46y + (—6(q — 7’@) —4r%(q — 1Y) + 8ry) cos 30y + [(2y — 4r(q — ry)) +
(4y — 8r(q — ry) + 6r y)] 1+y+r_ cos 26y + (2y — 4r(q — ry)) cos by + (—6(q — ry) —
4r?(q — ry) + 8ry)

1+y+ry

Multiply the denominator of N; by it’s conjugate, we have £, = 1+4#7+Tg cos 36y +

)"

So Re(Ny) = ~——11

(4+g+ry)3Fe-

i _ _ i —775)Se0 —2rgSe—0 r—(r2+1)y)S cos 6
Let Ny = e~ < p, Bq, (I=J) " Blq,q)) >= e~ (e 2le ity isenie)
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_ 2(q—rg)S—2rgSe—2904-2(qr—(r? +1)y)567190 c0890
N (1+g+rg)?(e**%0+2

)

Multiply the numerator of N, by the conjugate of the denominator, we get
—2rge% 4 2(qr — (r2 4+ 1)g)Se 4% cos By + 2(q — rg)Sedl — LS 200

4(gr—(r’4+1)gy)ys 4(g—r5)FS e
qr—\r Y)Yy —16, 9a—TY)y
1+y+ry e C089 + 1+g+ry

Let F5 be the real part of the previous term
Fy = —2r7 cos 500+2(qr—(r?+1)7)S cos 46 cos g+2(q—r7)S cos 30, — = T + — cos 20+
Algr=(r’+1)g)yS A(g=ry)ys

Ty cos” 0o +

_ 2(q—ry)—2rg+2[qgr—(r24+1)7] cos 26, F

Recall that S = 2T Y 1+q§+ry Y 0 SO RG(NQ) W

Let Ny = e~ < p, B(q, (eI — J)"'B(q,q)) >
= ¢ (Gmra o) (g (2(g = rg)e™™ = 2rge™ + (qr — (r* + Dg)(e™ +
e %))

= (mmm =) arteyn) (20 — 19)e¥™ = 2rg + (qr — (r* + 1)F) (" + e72%)).

1+y+ry

2(q—ry)e?90 —2rge— %0 42(qr—(r’+1)y) _ _6if g4 ]
Recall that L = T35 and D = %% + liyﬁ,ye 0 _ m
Substitute the value of L and D in N3, the numerator is
A(q—ry)*e*™ —4rg(q—ry) +4(g—7y)(qr— (P +1)g—ry)e*® +4r?yPe 0 —drg(qr—
(r? + 1)y) +2(qg — rg)(qr — (* + 1)7)e®® — 2rg(qr — (r* + 1)7)e*® + 2(qr — (r* +
1)7)?e*% +2(q—rg) (gr— (r*+1)7) —2rg(gr— (r?+1)§)e~ 4+ 2(gr— (r2+1)g)?e 2.

Let ap = —4rg(q — ry) — 4rg(qr — (r* + 1)y) + 2(q — ry)(qr — (r* + 1)),
a; — 2ry(qr — (r* + 1)y),

as = 4r%g% + 2(qr — (r* + 1)y)?,

az = 4q(qr — (r* + 1)§) — 6ry(qr — (r* + 1)g) — 4rj(q — 17)),

ay = 4(q —ry)* +2(qgr — (r* + 1)9)*,

as = 2(q —ry)(gr — (r* + 1)y).
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The numerator is ase%% + a,e?™ + aze?% 4 ag + aze2% + g e

_66100 + g(q—rﬂ) 4i6p __

- ‘ oL \A[ 900 _q—T§ _ Tif
and the denominator is (1+g+ry)*[e”? + Tt 0—|—2m it e
Y 316y __ y 2
5056 2(1+27+ng) ]
The conjugate of the denominator is
= V47, —9i6) a=ry _,—T7if —6i0 y(g=ry) _,—4if ] —3i0
WG+ e™ + pigrme ™ + 2mgrme " + 2akEe " e

2(—2—)2].
1+y+ry
Multiply the numerator of N3 by the conjugate of the denominator

[4(q — ry)?e’® — 4ryj(q — ry) + 4(q — ry)(qr — (r* + 1)y — r)e*% + 4r22e 2
—4rg(gr — (r* + 1)y) + 2(q — r§)(gr — (r* + 1)g)e"® — 2rg(qr — (r? + 1)g)e*™

+2(qr — (r* 4+ 1)g)%e" + 2(q — ry)(qr — (r* + 1)y) — 2ry(gr — (r* + 1)y)e

+2(gr—(r241)7)e 20 [14gry] e~ 04 (T el 40 U =il 1 JI_TIL, o4l
ﬁeﬂwo _ 2(1+gy+Tg)2]
=147+ Tg)4[_2&5(1+gﬂ+rg)2e6wo _ 2@4(1+gﬂ+rg)2e4ieo _ a51+5+r 3o
+<_2a3(1+y+7“y) + 2a %)6%60 - a41+y+r et
+(—2a0(7775 )% + 20470 4 2a5 ) + (—ag ks + aspt)e i
(g=ry)y g —3i6o

—2i6 r
+(—2a2(m) +2as W+2a4l+y+ry)e *+(- a’01+y+ry+ 4liy+yry+a)

(¢=r9)y _ _ y__\2 y —4ifo q=rF —5if
+QRaoqiFrr — 201 (ry)* + 2as g )M + (—ae g Fastiig Hade

(a=r9)y _y,—6ib —740
+<2a01+y+ry + 2 igrgp)e "+ (origrg — Gy T as)e ™
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(¢=r9)y y —8ify q=ry_\,—9%o g ,—10i6p
Qo igrge T 20 mgrg)e T+ (a0 T arpEg)e T + 201 yge

+<a1 1+y+ry t+a ) —H + ale_lgwo]'

The real part of the previous term is (1 + ¢ + ry)*F, where Fy is

_ (a=r9)y
Fy = (—2ao( )2+ 2a m + 2a5m)

1+y+ry

+ a5 =) cos by

_ y _ ]
H-tugng — 8w gty

(4=y)y 7] (g=ry)y
+(—2a2(1+y+w) + 203745 e + 2a41+y+ry 2a3(1r575)° + 205 7 i) cos 260

_ ]
H—ts T35 — Gty + Gatigarg T 0s) c0s36y

+(2a0% — 2&1(#}7@)2 + 2@3#@ - 2&4(#@)2) COS 400

+(—as 1+5+Tg+a3 11;:%—1—(14) cos 500 +(2a0 7202 (fiyf%z —2as( Mﬂw)% cos 66,

- + ag) cos 70y + (2@1((‘1—”7)_‘1'7 + 2@2#%) cos 86,

q—ry
(0555 — M5y 1+y+ry)?

+(ag+ as L) cos 90 + 2a; —L— T + - cos 1060y + (a; 2 + ay) cos 116y + a; cos 136,.

Tiytrg EEa

Also multiply the denominator of N3 by it’s conjugate

=10 \4[ 900 | _q=TT  Tifo 6o ylg—ry) 46y T 3ify g 2
(1+y+ry) e+ THg+rg iy 1+y+ry 20 e O+otrraz® 1+y+ry € 2( 1+z7+r37) It
. N4, —9i6 q—ry_,—Tib —6ifo g(g—ry) _—4iby ¥ —3ifg
+y+ry)ile T T © + 21+y+r17€ + 2(1+y+ry)2 € Ty+ry

~2Ai753)]

=(1+7+ Tg)s[_z(#;@)%%eo _ 2(%)3(3%90 _ (4(1“%@)3 + 1+gg+rg)66i90
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(a=r9)F 50 (g—rp)y® (a=r9)y _\ 4ib
+2(1+@7+r@)26 0_(4(1+?3+r§)4 (1+23+r23)2)6 °+ (2

(q—r9)*y 3
1+y+ry +2 (1+g+ry)3 + 2( 1+y+ry)

¥ \2),3ib q=ry (a—r)7® \ 230 (a—r9)y (a=r9)7> i
~2Atrrg) )™ + (5 + e+ Caigigr — 2t (1

—rg 2 (g—r9)?y 4 (a=r9)F (q=rPF* \ ,—if
+ lj-z?-g“y) +5( 1+y+ry) T 4(1+y+ry)4 +4( 1+y+ry) )+ (2 A+g+rg)? 2(1+§+7’§)3 Je ™

(g—ry)y> Y\ e—2ib ] 3 (g=r)%y \ ,—3i0
+<4(1+y+ry) + 1quy+€~y> ‘t (2<1+5+rg> 2(1+y+ry) +21+y+ry 2(1+y+ry) )e ’

(g—r9)y (g—r9)7 40 (¢=r9)y _—5i6 g 3 ] —6i0
_(4(1+y+ry)4 + (1+y+rz7)2) ot 2(1+y+ry)28 ' (4(1+y+r§) + 1+z7+rz7)e ’

(g=r9)y> _—Ti6 g \2,—9i6
The denominator of N multiplied by it’s conjugate is equal (1 + ¢ + ry)®F5

where Fy = (1 + (li;gy) + 5( ) + 4((f+ﬁ)rg%4 + 4(1+y+ry)4)

1+y+ry

(g=ry)y (=7’ (a—r9)7° —rj
220 5Grmr — 2aenr) 08t + 2145 0s + 1ighyg) cos 20

22 )P -2 ) 2 21 L) cos 30— 2(4 DL 4TI cos 4,

1+g+ry (+g+ry)? (At+g+ryt © (A+y+ry)?
—1—4% cos 500 —2(4 (1557 )+ 13y ) cos 66— Q(ﬂ Tj_/) 255 €08 T00—2( 1 )% cos 90y

—5 ()

cos 20y = 2 cos? 0y — 1,

where cosfy =

cos 30y = 3 cos® by — 3 cos by,

cos 460y = 8cos* Oy — 8cos? fy + 1

cos 50y = 12 cos® by — 18 cos® fy + 5 cos b,

cos 60y = 18 cos® y — 36 cos* Oy + 18 cos? Oy — 1,

cos 70y = 48 cos® Oy — 24 cos® Oy — 72 cos® Oy + 53 cos® Oy — 7 cos O,

cos 90y = 192 cos'? Oy — 192 cos® Oy — 288 cos” Oy + 24 cos® Oy + 288 cos® Oy — 116 cos® Oy +

9 cos by.
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1 1
a(p*) = §N1 + N2 + §N3

or
. Fl F3 1 F4
(") 2((1+gj+r37)3F2) (L+9+779)2Fy 2((1+@7+r@7)4F5)

Theorem 5.4. If a(p*) < 0 (respectively, > 0), then Neimark-Saker bifurcation of
system (5.1.2) at p = p* is supercritical (respectively, subcritical) and there exists
a unique invariant closed curve bifurcates from the positive fized point y which is

asymptotically stable (respectively, unstable).

5.4 Numerical Discursion

In this section we give numerical examples which support our results in the previous
section. Figures that we get using Matlab will be attached with example to illustrate
the bifurcation.

Take the case when ¢ =4 and r = 0.3.

We have the equation
P+ 4yn—s

Let the initial conditions be y_o =y_1 =yo = 1.

3+0+52p
2.6

Yn+1 = (541)

7=
Note that for p < ¢ = 3.0769, the bifurcation point p* is satisfy

1 3+/9+5.2p* 4— 3 3+4/9+5.2p*
+ 2 _ ° ( 2.6 )
4+ ‘7(3+\/g.+652p*) - 1+ 3+\/9;5.2p*

1.2
(25+( )(3 4 /9 + 5.2p*)? ﬁ JB+/9+52p*) —15=0

1.2 2.8 1.2 0.21
—(1+2——2—)+\/(1+ﬁ 28)2+ 4 15 x (0.25 + S24)

349152 = R |
A 2(0.25+(2_6)2)
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7(1+%7%)+\/(1+%7%)2+4x15x(0.25+ 021 )

(26271 9\2
. ([ 2(0.25+%) ] 3) 9

5.2
p* = 0.83564585

Now we will check if Neimark-Sacker bifurcation conditions hold. By theorem (5.2),

it is enough to check if

—(13r2 4160 —7)4+/(13r24+16r—7)24-4(6r—9) (9r3+1612+7r) 2
(200+1)( e )-a-1) - -1

414 )

p" >

Note that at p = p*, y = 2.55889613 and

1+ y_—i— 7’3{ _ 14 .3 x 2.55889613 + 2.55889613 74708948,
qg—ry+y 4—.3x 255889613 + 2.55889613

and

2(9r3+1672+77)
41+r)

—(13r2416r—7)++/ (13r24+16r—7)2+4(6r—9)(9r3+16r2+77) 2
(20+1)( v )~ a-1) ~ 1)

2
—(—13(0.3)2416%0.3—7)+1/(13(0.3)216x0.3—7)2+4(6 X 0.3—9) (9(0.3)3+16(0.3)2+7x0.3) _ a2
. (2(1’3)( 2(9(0.3)3+16(0.3)24+7x0.3) )=3 ()

4(1.3)

= —1.1334411 < 0.83564585 = p*.

So the condition of theorem (5.2) is satisfied. That implies equation (5.4.1) under-
goes a Neimark-Sacker bifurcation at p = p* = 0.83564585.

The bifurcation diagram of equation (5.4.1) is shown in Figure (5.1). Figure (5.1)
shows that the positive fixed point ¢ is asymptotically stable for p > p* and change
it’s stability at Neimark-Sacker bifurcation value p* and an invariant simple closed
curve appears on the plane (z(n),z(n — 2)) for p < p*. Figure (5.2) and figure
(5.3) shows the phase portraits associated with figure (5.2) for p = p* and p = 0.95,

respectively.
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y(n+1)

0 0,‘2 Dfd D,‘S D,‘B 1‘ 1,‘2 1!4 16
parameter p
; . ; ; ; — _ ptiyn—2 ;
Fig. 5.1: Neimark-Sacker bifurcation of the map y,11 = 1 TunT0.3yn—3> P Is a parameter.

N
==

| 2700\

25-

¥(n-2)

Z/

15 2 25 3 35
x(n)

Fig. 5.2: Phase portraits of the map 9,11 = % for p = p* .



5. Dynamics And Bifurcation Of y,11 = % 122

28

241

22 23 24 25 26 27 23 29 3

Fig. 5.3: Phase portraits of the map y,11 = % for p=0.95 .
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.1 Matlab code for chapter one

figure (1.1)

The fixed points of f(z) = 3z — z*

x0=0.2; %initial population x0
n=200; %end of time interval
x=zeros(n+1,1);

t=zeros(n+1,1);

x(1)=x0;

tt(1)=0;

for i=1:n

t(i)=i-1;

x(1+1)=x(i)*(3-x(1));

end

t(n+1)=n;

nn=100;

del=3./nn;

xstart=0;

yy=zeros(nn+1,1);
lin=zeros(nn+1,1);

xx=zeros (nn+1,1) ;

for i=1:nn+1
xx(i)=xstart+(i-1)*del;
lin(i)=xx(1i);

yy (1)=xx(1)*(3-xx(1));

end

plot(xx,lin,xx,yy)

title(’fixed points of f(x)=x(3-x)’)
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Figure(1.2) and (1.3)

The Cobweb diagram and the behavior of the solutions near the fixed point of

f(x) =3z — 2%
r=3; % growth rate
x0=0.2; hinitial population xO
n=80; %end of time interval

x=zeros(n+1,1);
t=zeros(n+1,1);
x(1)=x0;

tt(1)=0;

for i=1:n

t(i)=1i-1;
x(1+1)=x (1) *(r-x(1));
end

t(n+1)=n;

nn=100;

del=3./nn;

xstart=0;
yy=zeros(nn+1,1);
lin=zeros(nn+1,1);
xx=zeros (nn+1,1) ;

for i=1:nn+1
xx(i)=xstart+(i-1)*del;
lin(i)=xx(i);

yy (D) =xx(i)*(r-xx(i));
end

plot(xx,lin,xx,yy)
title(’cobweb diagram for f(x)=x(2-x), x0=0.2’),pause

xc=zeros(24,1);
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yc=zeros(24,1);

xc (1)=x0;

yc(1)=0;

xc(2)=x0;

yc(2)=x0%(r-x0) ;

yc(3)=yc(2);

xc(3)=yc(2);

plot(xx,lin,xx,yy,xc,yc),axis ([0 2 0 1.5]),pause

for j=3:20;

Jj=2%j-4;

xc(jj)=xc(jj-1);

yc(jj)=xc (3 *(r-xc(3j));

xc(jj+1)=yc(jj);

yc(jj+1)=yc(jj);

plot(xx,lin,xx,yy,xc,yc), axis ([0 2 0 1.5]),pause
end

plot(t,x,t,x,’.’)

xlabel (’n-iteration’),ylabel(’x(n)’), axis ([0 80 0 1.5])
title (’stability of fixed point’)

.2 Matlab code for chapter two

Figure (2.1)

Saddle-node bifurcation of the map f(z) = 22 — cz.

figure (8), hold on

for n=-0.25:0.0001:0.75
x=-(1-sqrt(1+4*n))/2;
plot(n,x,’-’,’MarkerSize’,6)
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axis([-0.5 1 -2 2])

end

for n=-0.25:0.01:0.75

y=-(1+sqrt (1+4#n))/2;

plot (m,y,’--’,’MarkerSize’,6)

title(’Saddle-node bifurcation of the map f(x)=x"2-c x’)
xlabel (’parameter c’),ylabel(’x’)

end

hold off

Figure(2.2)

Transcritical bifurcation of the map f(z) = 2? + cz.

figure (6), hold on
for n=-1:0.03:1
x=1-n;
plot(n,x,’--’,’MarkerSize’,6)
axis([-2 4 -2.5 2.5])
end
for n=-1:0.001:1
y=0;
plot (n,y,’--’,’MarkerSize’,6)
end
for n=1:0.001:3
x=1-n;
plot(n,x,’--’,’MarkerSize’,6)
end
for n=1:0.03:3
y=0;
plot(n,y,’--’,’MarkerSize’,6)
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title(Transcritical bifurcation of the map f(x)=x"2+c x)
xlabel (’parameter c’),ylabel(’x’)
end

hold off

Figure(2.3)

Pitchfork bifurcation of f(z) = cx — 2z°

figure (7), hold on
for i=-1:0.001:1

x=0;

plot (i,x,’MarkerSize’,6), axis([-1.2 2.2 -1 1])
end
for i=1:0.001:2

x=-sqrt ((i-1)/2);

y=sqrt ((i-1)/2);

plot (i,x,’blue’,i,y,’blue’,’MarkerSize’,6)
end
for i=1:0.04:2

x=0;

plot(i,x,’-’, ’MarkerSize’,6)

xlabel (’parameter c’)

ylabel(’x’)

title(Pitchfork bifurcation of f(x)=c x -2x73)
end

hold off
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.3 Matlab Code For Chapter Three

Figure (3.2)

4+5yn71

The behavior of the solutions of y,11 = FEm——

n=70;

x=zeros(n+1,1);

t=zeros(n+1,1);

x(1)=0.1;x(2)=1.1;

tt(1)=0;

for i=2:n

t(i)=i-1;

x(i+1)=(4+5*x(i-1))/(1+x(1)+0.5%x(i-1));

end

t(n+1)=n;

plot(t,x,t,x,’.’) ,xlabel(’n-iteration’),ylabel(’x(n)’)
axis ([0 70 0 10]), title (’unstabile fixed point’)

Figure (3.1)

0.841.5yn_3

The behavior of the solutions of y,,1 = 5 Ty T

n=150;

x=zeros(n+1,1);

t=zeros(n+1,1);
x(1)=0.1;x(2)=1.1;x(3)=0.2;x(4)=1;

for i=4:n

t(i)=1i-1;
x(i+1)=(0.8+1.5%x(i-3))/(1+x(1)+0.5%x(i-3));



130

end

t(n+1)=n;

plot(t,x,t,x,’.”),xlabel(’n-iteration’),ylabel(’x(n)’), axis ([0 150 0 1.5])
title (’stabile fixed point’)

.4 Matlab Code For Chapter Four

Figure (4.1)

1+qyn7 1
1+yn+0.09y,—1 "

Period-doubling bifurcation of y,,; =

amin=0;
amax=10;
x0=.2;x1=.3;
n=1000;
jmax=200;
t=zeros(jmax+1,1);
z=zeros (jmax+1,250) ;
del=(amax-amin)/jmax;
for j=1:jmax+1
x=zeros(n+1,1);
x(1)=x0;x(2)=x1;
t(j)=(j-1)*del+amin;
a=t(j);
for i=2:n
x(1+1)=1+a.*x(i-1))/(1+x(1)+.9.*x(i-1));
if (i>750)

z(j,1-750)=x(i+1);

end

end
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end

plot(t,z,’blue’,’MarkerSize’,5),title (’Period-doubling bifurcation’)

Figure (4.2)

pt1ldyn—1
1+yn+0.09yn—1

Period-doubling bifurcation of y,,; =

amin=0;
amax=2;
x0=.2;x1=.3;
n=1000;
jmax=200;
t=zeros(jmax+1,1);
z=zeros (jmax+1,250) ;
del=(amax-amin)/jmax;
for j=1:jmax+1
x=zeros(n+1,1);
x(1)=x0;x(2)=x1;
t(j)=(j-1)*del+amin;
a=t(j);
for i=2:n
x(A+1)=(a+1.1.*x(i-1))/(1+x(1)+.09.*x(i-1));
if (i>750)

z(j,i-750)=x (i+1);

end
end
end
plot(t,z,’blue’,’MarkerSize’,6)
title (’Period-doubling bifurcation’),xlabel(’parameter q’), ylabel(’x(n)’)
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.5 Matlab Code For Chapter Five

Figure (5.1)

_ ptdyn—2
1+yn+0.3yn—2"

Neimark-Sacker bifurcation of y, 11 =
amin=0;
amax=1.6;
x0=1;x1=1;
n=1000;
jmax=200;
t=zeros (jmax+1,1);
z=zeros (jmax+1,250) ;
del=(amax-amin)/jmax;
for j=1:jmax+1
x=zeros(n+1,1);
x(1)=x0;x(2)=x1;x(3)=1;
t(j)=(j-1)*del+amin;
a=t(j);
for i=3:n
x(i+1)=(a+4.*x(i-2))/(1+x(1)+.3.*x(i-2));
if (i>750)
z(j,1-750)=x(i+1);
end
end
end

plot(t,z,’blue’,’MarkerSize’,6) ,xlabel(’parameter p’), ylabel(’y(n+1)’)
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Matlab code of figure (5.2)

pt+4yn—2 R
Ty, t03yn 2 P =P -

Phase portraits diagram of y,, 1 =
$N=1000; x(1)=1;x(2)=1;x(3)=1;
for p=0.8354585
for n=3:1:0.3%N
x(n+1)=(p+4*x(n-2))/(1+x(n)+0.3*x(n-2)) ;
x(n-1);
end
figure (2), hold on
for n=0.3%N :1:N
x(n+1)=(p+4*x(n-2))/(1+x(n)+0.3*x(n-2)) ;

x(n);
plot(x(n),x(n-2),’.’, MarkerSize’,5) ,axis([2.2 3.2 2.2 3.2])
xlabel (’x(n)’),ylabel(’x(n-2)’)
end
end
hold off

Matlab code of figure (5.3)

Phase portraits diagram of y,, 1 = ﬂ% p = 0.95.

N=1000; x(1)=1;x(2)=1;x(3)=1;
for p=0.95
for n=3:1:0.3%N
x(n+1)=(p+4*x(n-2))/(1+x(n)+0.3*x(n-2)) ;
x(n-1);

end
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figure (2), hold on

for n=0.3%N :1:N
x(n+1)=(p+4*x(n-2))/(1+x(n)+0.3*x(n-2)) ;
x(n);
plot(x(n),x(n-2),’.’, MarkerSize’,5) ,axis([2.2 3 2.2 3])
xlabel(’x(n)’) ,ylabel(’x(n-2)’)

end

end

hold off
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